In this paper, we characterize the performance of several canonical mobility models in a drone cellular network in which drone base stations (DBSs) serve user equipments (UEs) on the ground.In particular, we consider the following four mobility models: (i) straight line (SL), (ii) random stop (RS), (iii) random walk (RW), and (iv) random waypoint (RWP), among which the SL mobility model is inspired by the simulation models used by the third generation partnership project (3GPP) for the placement and trajectory of drones, while the other three are well-known canonical models (or their variants) that offer a useful balance between realism and tractability. Assuming the nearest-neighbor association policy, we consider two service models for the UEs: (i) UE independent model (UIM), and (ii) UE dependent model (UDM). While the serving DBS follows the same mobility model as the other DBSs in the UIM, it is assumed to fly towards the UE of interest in the UDM and hover above its location after reaching there. The main contribution of this paper is a unified approach to characterize the point process of DBSs for all the mobility and service models. Using this, we provide exact mathematical expressions for the average received rate and the session rate as seen by the typical UE. Further, using tools from calculus of variations, we concretely demonstrate that the simple SL mobility model provides a lower bound on the performance of other general mobility models (including the ones in which drones follow curved trajectories) as long as the movement of each drone in these models is independent and identically distributed (i.i.d.). To the best of our knowledge, this is the first work that provides a rigorous analysis of key canonical mobility models for an infinite drone cellular network and establishes useful connections between them.
Device-to-device (D2D) communications have recently emerged as a novel transmission paradigm in wireless cellular networks. D2D transmissions take place concurrently with the usual cellular connections, and thus, controlling the interference brought to the macro-cellular user equipment (UE) is of vital importance. In this letter, we consider the uplink transmission of a tier of D2D users that operates as an underlay for the traditional cellular network. Using a network model based on stochastic geometry, we derive the equilibrium cumulative distribution function (CDF) of the D2D transmit power. Considering interference-limited and relatively lossy environment cases, closed-form equations are derived for the power CDF. Finally, a tight closed-form upper-bound for the derived power distribution is proposed, and the analytical results are validated via simulation.
This paper deals with the stochastic geometry-based characterization of the time-varying performance of a drone cellular network in which the initial locations of drone base stations (DBSs) are modeled as a Poisson point process (PPP) and each DBS is assumed to move on a straight line in a random direction. This drone placement and trajectory model closely emulates the one used by the third generation partnership project (3GPP) for drone-related studies. Assuming the nearest neighbor association policy for a typical user equipment (UE) on the ground, we consider two models for the mobility of the serving DBS: (i) UE independent model, and (ii) UE dependent model. Using displacement theorem from stochastic geometry, we characterize the time-varying interference field as seen by the typical UE, using which we derive the time-varying coverage probability and data rate at the typical UE. We also compare our model with more sophisticated mobility models where the DBSs may move in nonlinear trajectories and demonstrate that the coverage probability and rate estimated by our model act as lower bounds to these more general models. To the best of our knowledge, this is the first work to perform a rigorous analysis of the 3GPP-inspired drone mobility model and establish connection between this model and the more general non-linear mobility models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.