In the present study, epoxy samples containing nanoporous graphene (NPG) were synthesized and analyzed in terms of mechanical, morphological, thermal, adhesion, and anticorrosion properties. To this end, the employed curing agents (hardeners) were synthesized and NPG content was varied from 0 to 1 wt %. By using a hardener with aliphatic side chains, the toughness of the nanocomposite was improved without a decrease in the modulus. Adding 1 wt % NPG increased the modulus of the nanocomposite by about 30%. The dynamic mechanical results showed an increment in the glass transition of the samples containing 1 wt % NPG. Field emission scanning electron microscopy images were used to observe the fracture surface of the nanocomposites. The thermogravimetric analysis analysis also confirmed that using synthetic hardener and NPG as the nanofiller enhanced the thermal resistance of the samples. The images of the protected metal panel surfaces and their coatings were used to study adhesion and anticorrosion properties. These results indicated that the hardener synthesized in this work along with NPG improved the mechanical, thermal, adhesion, and anticorrosion properties of the epoxy nanocomposites effectively. The specific characteristic of the synthetic hardener was its chemical structure including both aliphatic and cyclic polyamines as the side groups. V C 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46201.
Rigid polyurethane foams (RPUF) with nanoporous graphene (NPG) were synthesized and their properties, including density, mechanical, morphological, and thermal‐resistant properties were studied. In the current work, polyols of the RPUF formulation were synthesized and NPG content was varied from 0.1 to 0.5 wt %. Scanning electron microscopy (SEM) observation was used to observe the dispersion of NPG and cell size in the RPUF nanocomposites. Only 0.25 wt % of NPG improved compressive strength and modulus respectively by 10.7% and 66.5%. The TGA analysis confirmed that an increase in NPG loading slightly increase the degradation temperature of the samples. These results additionally indicated that NPG enhances the mechanical properties of the RPUF nanocomposites more effectively compared to other nanoparticles (clay, silica etc.). The superiority of NPG over other nanoparticles can be attributed to unique two‐dimensional geometrical morphology and a higher specific surface area. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45001.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.