Managing nitrogen (N) fertilizer applied in agricultural fields is important for increasing crop productivity while limiting the environmental contamination caused by release of reactive N, especially for crops with high N demand (e.g., corn, Zea mays L.). However, for given soil properties, the optimum amount of N applied depends on climatic conditions. The central question to N management is then what should be the recommended N rate for given soil and climate that would minimize the release of reactive N while maintaining the crop productivity. To address this central challenge of N management, we used a recently developed model-based methodology (called "Identifying NEMO"), which was proved to be effective in identifying ecophysiological optimum N rate and optimum nitrogen use efficiency (NUE opt ). We performed modeling for dominant soils and various agroclimatic conditions in five regions along the Mixedwood Plains ecozone, where more than 90% of Canadian corn production takes place. Here, we analyzed for the first time the effect of soil and climate on ecophysiological optimum N rate in an ecozone where there exists a significant agroclimatic gradient. Our results indicated that there were some commonalities among all soils and regions, which we could classify them into two groups with NUE opt ranging from 10 to 17 kg dry yield kg −1 N. For cases with low NUE opt , the recommended N for an expected dry yield of 8 t ha −1 varied from 115 to 199 kg ha −1 , whereas they were much lower (79-154 kg ha −1 ) for cases with high NUE opt . These recommendations were 20-40 kg ha −1 lower than provincial recommendations. Moreover, we found that the different behavior of the two groups was due to soil textures and soils available water holding capacity. For most locations, soils with intermediate available water holding capacity (i.e., 12-15%v) had relatively higher expected yield and lower recommended N.
Applying higher nitrogen (N) rates than required for optimum potato (Solanum tuberosum L.) growth leads to economic and environmental losses. The extent to which the N rate associated with maximum potato yields differs from that maximizing net revenue (NR) or potato specific gravity is not fully understood. The objectives of this three-year study (2013–2015) conducted at five sites in three Canadian provinces (MB-1; MB-2; QC-1; QC-2; PEI) (15 site-years) were to: (i) assess potato marketable yield, NR, and specific gravity responses to increasing N application; (ii) calculate the N rate maximizing marketable (Nmax) yield and NR using different statistical models. The year, N fertilizer, and their interaction were significant on marketable yield and NR except at the MB-1 site where no significant effect of N was observed. No significant yield increases were observed at a N rate above 60 kg N ha−1 at four site-years and above 120 kg N ha−1 at five site-years, implying that the current recommended N rate could be reduced. All models fitted the marketable and NR data equally based on R2, mean bias error or root mean square error and resulted in comparable predicted yield and NR values. However, Nmax values were different depending on the model with higher values being predicted by the quadratic- (161.4 to 191.9 kg N ha−1) and the quadratic plateau models (60 to 191.9 kg N ha−1), while lower Nmax values were obtained with linear plateau- (60.6 to 129.8 kg N ha−1) and Mitscherlich–Baule plateau models (60.9 to 130. 9 kg N ha−1). Nitrogen rate maximizing NR was on average 4% lower than the N rate maximizing marketable yields, except at one site where it was higher by 26 kg N ha−1 when the quadratic plus plateau model was used. Specific gravity tended to decrease with the N rate. Our study confirms trade-offs between the N rate maximizing yields or NR with that maximizing specific gravity. Nitrogen rate maximizing marketable yield and NR varies depending on the selected model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.