Path-dependent forming limits have been computed for sheet metals undergoing various combinations of plane stress loading conditions. This paper presents a theoretical model for prediction of stress-based forming limit curves (SFLC) based on the Marciniak and Kuczynski (MK) model. Acceptable agreement was observed between calculated forming limit curves (FLC) and experimental data for AISI-1012 steel (Molaei 1999) and AA-2008-T4 alloys (Graf and Hosford Metallurgical Trans 24A:2503-2512, 1993. In this paper, the path dependency of SFLCs predicted for different non-proportional loading histories has been investigated. For a range of prestrain values in different bilinear loading paths, the SFLC remains practically unchanged. However, some strain path dependency is observed for large values of prestrain (e ! 0:35 for AISI-1012 steel) and for abrupt changes in strain path. Nevertheless, the SFLC remains a good failure criterion for virtual forming simulations because the path dependency of SFLCs is much less significant than that of strain-based FLCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.