The coronavirus disease 19 (COVID-19) is a highly transmittable viral infection caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 utilizes metallocarboxyl peptidase angiotensin receptor (ACE) 2 to gain entry into human cells. Activation of several proteases facilitates the interaction of viral spike proteins (S1) and ACE2 receptor. This leads to cleavage of host ACE2 receptors. ACE2 activity counterbalances the angiotensin II effect, its loss may lead to elevated angiotensin II levels with modulation of platelet function, size and activity. COVID-19 disease encompasses a spectrum of systemic involvement far beyond respiratory failure alone. Several features of this disease, including the etiology of acute kidney injury (AKI) and the hypercoagulable state, remain poorly understood. Here, we show that there is a high incidence of AKI (81%) in the critically ill adults with COVID-19 in the setting of elevated D-dimer, elevated ferritin, C reactive protein (CRP) and lactate dehydrogenase (LDH) levels. Strikingly, there were unique features of platelets in these patients, including larger, more granular platelets and a higher mean platelet volume (MPV). There was a significant correlation between measured D-dimer levels and MVP; but a negative correlation between MPV and glomerular filtration rates (GFR) in critically ill cohort. Our data suggest that activated platelets may play a role in renal failure and possibly hypercoagulability status in COVID19 patients.
Background Pneumothorax has been increasingly observed among patients with coronavirus disease-2019 (COVID-19) pneumonia, specifically in those patients who develop acute respiratory distress syndrome (ARDS). In this study, we sought to determine the incidence and potential risk factors of pneumothorax in critically ill adults with COVID-19. Method This retrospective cohort study included adult patients with laboratory-confirmed SARS-CoV-2 infection admitted to one of the adult intensive care units of a tertiary, academic teaching hospital from May 2020 through May 2021. Results Among 334 COVID-19 cases requiring ICU admission, the incidence of pneumothorax was 10% (33 patients). Patients who experienced pneumothorax more frequently required vasopressor support (28/33 [84%] vs. 191/301 [63%] P = 0.04), were more likely to be proned (25/33 [75%] vs. 111/301 [36%], P<0.001), and the presence of pneumothorax was associated with prolonged duration of mechanical ventilation; 21 (1–97) versus 7 (1–79) days, p<0.001 as well as prolonged hospital length of stay (29 [9–133] vs. 15 [1–90] days, P<0.001), but mortality was not significantly different between groups. Importantly, when we performed a Cox proportional hazard ratio (HR) model of multivariate parameters, we found that administration of tocilizumab significantly increased the risk of developing pneumothorax (HR = 10.7; CI [3.6–32], P<0.001). Conclusion Among 334 critically ill patients with COVID-19, the incidence of pneumothorax was 10%. Presence of pneumothorax was associated with prolonged duration of mechanical ventilation and length of hospital stay. Strikingly, receipt of tocilizumab was associated with an increased risk of developing pneumothorax.
Sarcoidosis is a systemic granulomatous disease of unknown etiology with significant heterogeneity in organ manifestations and clinical course. Subjects with sarcoidosis share several features such as, non-necrotizing granuloma, hypergammaglobulinemia, increased local and circulating inflammatory cytokines. Macrophage migration inhibitory factor (MIF) is a pluripotent chemokine modulating cellular function. Study included healthy controls (n = 28) and sarcoidosis patients (n = 65). Sera and BAL of sarcoidosis patients were collected and patients were followed longitudinally for 3 years, and demographics, stages, pulmonary function tests, and organ involvements were recorded. We evaluated MIF in the serum and bronchoalveolar lavage (BAL) fluid of sarcoidosis patients in association with clinical features and cytokines, IL-18, IL-10, IL-6, IFN-γ. We found serum MIF had a positive correlation with IL-10 and IFN-γ and % predicted total lung capacity (%TLC). Serum IL-18 had a significant positive correlation with serum lysozyme, but a negative correlation with %TLC and %DLCO. We identified two groups of sarcoidosis subjects with distinct clinical and cytokine features. A group with prominent extrapulmonary involvement, and low serum MIF, IL-10 and IFN-γ and a group with elevated serum MIF, IL-10 and IFN-γ levels. Our work provides understanding of phenotypic diversity in association with heterogeneity in cytokine landscape in sarcoidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.