The ability to predict future outcomes conditioned on observed video frames is crucial for intelligent decision-making in autonomous systems. Recently, deep recurrent architectures have been applied to the task of video prediction. However, this often results in blurry predictions and requires tedious training on large datasets. Here, we explore a different approach by (1) using frequency-domain approaches for video prediction and (2) explicitly inferring object-motion relationships in the observed scene. The resulting predictions are consistent with the observed dynamics in a scene and do not suffer from blur.
The ability to predict future outcomes conditioned on observed video frames is crucial for intelligent decision-making in autonomous systems. Recently, deep recurrent architectures have been applied to the task of video prediction. However, this often results in blurry predictions and requires tedious training on large datasets. Here, we explore a different approach by (1) using frequency-domain approaches for video prediction and (2) explicitly inferring object-motion relationships in the observed scene. The resulting predictions are consistent with the observed dynamics in a scene and do not suffer from blur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.