The discovery of the quantum Hall (QH) effect led to the realization of a topological electronic state with dissipationless currents circulating in one direction along the edge of a two dimensional electron layer under a strong magnetic field. 1,2 The quantum anomalous Hall (QAH) effect shares a similar physical phenomenon as the QH effect, whereas its physical origin relies on the intrinsic spin-orbit coupling and ferromagnetism.
The fundamental challenge for designing transparent conductors used in photovoltaics, displays and solid-state lighting is the ideal combination of high optical transparency and high electrical conductivity. Satisfying these competing demands is commonly achieved by increasing carrier concentration in a wide-bandgap semiconductor with low effective carrier mass through heavy doping, as in the case of tin-doped indium oxide (ITO). Here, an alternative design strategy for identifying high-conductivity, high-transparency metals is proposed, which relies on strong electron-electron interactions resulting in an enhancement in the carrier effective mass. This approach is experimentally verified using the correlated metals SrVO3 and CaVO3, which, despite their high carrier concentration (>2.2 × 10(22) cm(-3)), have low screened plasma energies (<1.33 eV), and demonstrate excellent performance when benchmarked against ITO. A method is outlined to rapidly identify other candidates among correlated metals, and strategies are proposed to further enhance their performance, thereby opening up new avenues to develop transparent conductors.
We report dielectric constant measurements showing critical fluctuation-induced thinning of 4 He films near the superfluid transition. The films are adsorbed on a stack of copper electrodes suspended at different heights above bulk liquid. We calibrate the measurements by assuming that the film thickness away from the transition region at different heights is accurately given by theory. The thinning is found to be consistent with finite-size scaling, if the value of the scaling function for each thickness is normalized by its value at the minimum.
Metallic nanowires (Au, Ag, Cu, Ni, Co, and Rh) with an average diameter of 40 nm and a length of 3-5 μm have been fabricated by electrodeposition in the pores of track-etched polycarbonate membranes. Structural characterizations by transmission electron microscopy (TEM) and electron diffraction showed that nanowires of Au, Ag, and Cu are single-crystalline with a preferred [111] orientation, whereas Ni, Co, and Rh wires are polycrystalline. Possible mechanisms responsible for nucleation and growth for single-crystal noble metals versus polycrystalline group VIII-B metals are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.