Electrospinning is a process in which solid fibers are produced from a polymeric fluid stream ͑solution or melt͒ delivered through a millimeter-scale nozzle. The solid fibers are notable for their very small diameters ͑Ͻ1 m͒. Recent experiments demonstrate that an essential mechanism of electrospinning is a rapidly whipping fluid jet. This series of papers analyzes the mechanics of this whipping jet by studying the instability of an electrically forced fluid jet with increasing field strength. An asymptotic approximation of the equations of electrohydrodynamics is developed so that quantitative comparisons with experiments can be carried out. The approximation governs both long wavelength axisymmetric distortions of the jet, as well as long wavelength oscillations of the centerline of the jet. Three different instabilities are identified: the classical ͑axisymmetric͒ Rayleigh instability, and electric field induced axisymmetric and whipping instabilities. At increasing field strengths, the electrical instabilities are enhanced whereas the Rayleigh instability is suppressed. Which instability dominates depends strongly on the surface charge density and radius of the jet. The physical mechanisms for the instability are discussed in the various possible limits.
Electrospinning is a process in which solid fibers are produced from a polymeric fluid stream ͑solution or melt͒ delivered through a millimeter-scale nozzle. This article uses the stability theory described in the previous article to develop a quantitative method for predicting when electrospinning occurs. First a method for calculating the shape and charge density of a steady jet as it thins from the nozzle is presented and is shown to capture quantitative features of the experiments. Then, this information is combined with the stability analysis to predict scaling laws for the jet behavior and to produce operating diagrams for when electrospinning occurs, both as a function of experimental parameters. Predictions for how the regime of electrospinning changes as a function of the fluid conductivity and viscosity are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.