The combined data of milk composition of 14 African elephants over 25 months of lactation are presented. The milk density was constant during lactation. The total protein content increased with progressing lactation, with caseins as the predominant protein fraction. The total carbohydrates steadily decreased, with the oligosaccharides becoming the major fraction. Lactose and isoglobotriose reached equal levels at mid lactation. The milk fat content increased during lactation, as did the caprylic and capric acids, while the 12 carbon and longer fatty acids decreased. The fatty acid composition of the milk phospholipids fluctuated, and their total saturated fatty acid composition was low compared to the triacylglycerides. The milk ash and content of the major minerals, Na, K, Mg, P, and Ca, increased. Vitamin content was low, Vitamin E occurred in quantifiable amounts, with traces of vitamins A, D3, and K. The energy levels of African elephant milk did not change much in the first ten months of lactation, but they increased thereafter due to the increase in protein and fat content. The overall changes in milk composition appeared to be in two stages: (a) strong changes up to approximately 12 months of lactation and (b) little or no changes thereafter.
This research paper addresses the hypothesis that comparative genomics can give a new insight into the functionality of casein genes with respect to the casein micelle. Comparative genomics is a rapidly emerging field in computational biology whereby two or more genomes are compared in order to obtain a global view on genomes as well as assigning previously unknown functions for genes. Casein genes are among the most rapidly evolving mammalian genes, with the gene products mainly grouped into four types (αs1-, αs2-, β- and κ-casein). Functionally, casein genes are central to the casein micelle, the exact structure of which is still a subject of intense debate. Moreover, and adding to this complexity, some mammals lack some of the casein genes, although casein micelles have been observed in their milk. This observation has prompted an investigation into the distribution of casein genes across a host of mammalian species. It was apparent from this study that casein gene sequences are very diverse from each other and we confirmed that many mammalian species lack one or more of the casein genes. The genes encoding β- and κ-caseins are present in most mammals whereas α-casein encoding genes are less represented. This suggests different mechanisms for casein micelle formation in different species as well as the functions that are assigned to each individual casein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.