This paper presents a non-experimental, exploratory and descriptive study of learners and educators from seven Soshanguve secondary schools in order to learn more about factors that possibly contribute to lack of success in mathematics and physical sciences in the 11 th grade. The paper focuses primarily on the learners' and educators' perceptions of why learners perform badly in Grade 11 and 12 mathematics and physical science. The methodology used includes data collected through unstructured interviews and the use of matric results made available by the Department of Education. The following categories of factors contributing to poor performance of learners in mathematics and physical science were identified: laboratory apparatus, teacher's content knowledge, time management, parents' commitment to children's education, motivation and interest and teaching strategies.
Technological advancement is a major driver of the economic growth and has raised living standards enormously (though unevenly) across the globe. Digital technologies radically transform the structure of organisations and employment models, including teaching and learning. Youth and people who lack high-level technological and interpersonal skills are becoming vulnerable due to digital automated jobs. There is a need for targeted and strategic skills, and STEM that is responding to the changing technological world. The digital revolution and an increasing demand for designing and manufacturing are driving the growth of the creative sector, which extends from arts to science and technology and involves cultural creativity and innovation. Science, technology, engineering and mathematics (STEM) students should be equipped with designing and making skills for the twenty-first-century jobs. There is growing polarisation of labour market opportunities between high-and low-skill jobs, unemployment and underemployment especially among young people. Globally, almost 75 million youth are officially unemployed. This chapter present the driving forces for new jobs and skills for the future. The chapter also outlines the contribution of STEM knowledge and skills for digital literacy from basics to an advance level. The implication of digital literacy for the fourth industrial revolution is highlighted. The empirical part of this chapter presents results based on the investigation done on the vocational educational and training practices at three TVET colleges in one province in South Africa. The study focused on vocational pedagogic and didactic practices, workshop material and equipment for practical training, work-integrated learning and integration of theory and practice in vocational subjects. This investigation is a case study to gauge the extent of readiness of some TVET colleges for the fourth industrial revolution. The methodology of collecting data was questionnaires, interviews and observation. The participants of the study were students and lecturers. On the basis of these data, the paper determines the extent of readiness of TVET as well as CET colleges in the country. The paper recommends measures to position the TVET and CET colleges for the fourth industrial revolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.