In this letter we briefly survey our main result from [Babaioff el al. 2014]: a simple and approximately revenue-optimal mechanism for a monopolist who wants to sell a variety of items to a single buyer with an additive valuation.
We present generalized secretary problems as a framework for online auctions. Elements, such as potential employees or customers, arrive one by one online. After observing the value derived from an element, but without knowing the values of future elements, the algorithm has to make an irrevocable decision whether to retain the element as part of a solution, or reject it. The way in which the secretary framework differs from traditional online algorithms is that the elements arrive in uniformly random order.Many natural online auction scenarios can be cast as generalized secretary problems, by imposing natural restrictions on the feasible sets. For many such settings, we present surprisingly strong constant factor guarantees on the expected value of solutions obtained by online algorithms. The framework is also easily augmented to take into account time-discounted revenue and incentive compatibility. We give an overview of recent results and future research directions.
Abstract. We consider situations in which a decision-maker with a fixed budget faces a sequence of options, each with a cost and a value, and must select a subset of them online so as to maximize the total value. Such situations arise in many contexts, e.g., hiring workers, scheduling jobs, and bidding in sponsored search auctions. This problem, often called the online knapsack problem, is known to be inapproximable. Therefore, we make the enabling assumption that elements arrive in a random order. Hence our problem can be thought of as a weighted version of the classical secretary problem, which we call the knapsack secretary problem. Using the random-order assumption, we design a constant-competitive algorithm for arbitrary weights and values, as well as a e-competitive algorithm for the special case when all weights are equal (i.e., the multiple-choice secretary problem). In contrast to previous work on online knapsack problems, we do not assume any knowledge regarding the distribution of weights and values beyond the fact that the order is random.
In this letter we present a brief report of our recent research on information distribution mechanisms in networks [Babaioff et al. 2011]. We study scenarios in which all nodes that become aware of the information compete for the same prize, and thus have an incentive not to propagate information. Examples of such scenarios include the 2009 DARPA Network Challenge (finding red balloons), and raffles. We give special attention to one application domain, namely Bitcoin, a decentralized electronic currency system. We propose reward schemes that will remedy an incentives problem in Bitcoin in a Sybil-proof manner, with little payment overhead.
We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer has a value for each item drawn independently according to (non-identical) distributions, and his value for a set of items is additive. The seller aims to maximize his revenue. It is known that an optimal mechanism in this setting may be quite complex, requiring randomization [19] and menus of infinite size [15]. Hart and Nisan [17] have initiated a study of two very simple pricing schemes for this setting: item pricing, in which each item is priced at its monopoly reserve; and bundle pricing, in which the entire set of items is priced and sold as one bundle. Hart and Nisan [17] have shown that neither scheme can guarantee more than a vanishingly small fraction of the optimal revenue. In sharp contrast, we show that for any distributions, the better of item and bundle pricing is a constant-factor approximation to the optimal revenue. We further discuss extensions to multiple buyers and to valuations that are correlated across items.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.