Diffusion is a fundamental graph process, underpinning such phenomena as epidemic disease contagion and the spread of innovation by word-of-mouth. We address the algorithmic problem of finding a set of k initial seed nodes in a network so that the expected size of the resulting cascade is maximized, under the standard independent cascade model of network diffusion. Runtime is a primary consideration for this problem due to the massive size of the relevant input networks.We provide a fast algorithm for the influence maximization problem, obtaining the nearoptimal approximation factor of (1 − 1 e − ǫ), for any ǫ > 0, in time O((m + n)kǫ −2 log n). Our algorithm is runtime-optimal (up to a logarithmic factor) with respect to network size, and substantially improves upon the previously best-known algorithms which run in time Ω(mnk · POLY(ǫ −1 )). Furthermore, our algorithm can be modified to allow early termination: if it is terminated after O(β(m + n)k log n) steps for some β < 1 (which can depend on n), then it returns a solution with approximation factor O(β). Finally, we show that this runtime is optimal (up to logarithmic factors) for any β and fixed seed size k.
In this letter we briefly survey our main result from [Babaioff el al. 2014]: a simple and approximately revenue-optimal mechanism for a monopolist who wants to sell a variety of items to a single buyer with an additive valuation.
We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in an arbitrary order, each purchasing her favorite bundle from among the unsold items at the posted prices. These mechanisms are simple, transparent and trivially dominant strategy incentive compatible (DSIC).We show that when agent preferences are fractionally subadditive (which includes all submodular functions), there always exist prices that, in expectation, obtain at least half of the optimal welfare. Our result is constructive: given black-box access to a combinatorial auction algorithm A, sample access to the prior distribution, and appropriate query access to the sampled valuations, one can compute, in polytime, prices that guarantee at least half of the expected welfare of A. As a corollary, we obtain the first polytime (in n and m) constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions, given access to demand query oracles. Our results also extend to valuations with complements, where the approximation factor degrades linearly with the level of complementarity.
Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. The allocation and prices are then resolved for each item separately, based solely on the bids submitted on that item. We study the efficiency of Bayes-Nash equilibrium (BNE) outcomes of simultaneous first-and second-price auctions when bidders have complement-free (a.k.a. subadditive) valuations. While it is known that the social welfare of every pure Nash equilibrium (NE) constitutes a constant fraction of the optimal social welfare, a pure NE rarely exists, and moreover, the full information assumption is often unrealistic. Therefore, quantifying the welfare loss in Bayes-Nash equilibria is of particular interest. Previous work established a logarithmic bound on the ratio between the social welfare of a BNE and the expected optimal social welfare in both first-price auctions (Hassidim et al. [11]) and second-price auctions (Bhawalkar and Roughgarden [2]), leaving a large gap between a constant and a logarithmic ratio. We introduce a new proof technique and use it to resolve both of these gaps in a unified way. Specifically, we show that the expected social welfare of any BNE is at least 1 /2 of the optimal social welfare in the case of first-price auctions, and at least 1 /4 in the case of second-price auctions.
We consider a monopolist seller with n heterogeneous items, facing a single buyer. The buyer has a value for each item drawn independently according to (non-identical) distributions, and his value for a set of items is additive. The seller aims to maximize his revenue. It is known that an optimal mechanism in this setting may be quite complex, requiring randomization [19] and menus of infinite size [15]. Hart and Nisan [17] have initiated a study of two very simple pricing schemes for this setting: item pricing, in which each item is priced at its monopoly reserve; and bundle pricing, in which the entire set of items is priced and sold as one bundle. Hart and Nisan [17] have shown that neither scheme can guarantee more than a vanishingly small fraction of the optimal revenue. In sharp contrast, we show that for any distributions, the better of item and bundle pricing is a constant-factor approximation to the optimal revenue. We further discuss extensions to multiple buyers and to valuations that are correlated across items.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.