We study anonymous posted price mechanisms for combinatorial auctions in a Bayesian framework. In a posted price mechanism, item prices are posted, then the consumers approach the seller sequentially in an arbitrary order, each purchasing her favorite bundle from among the unsold items at the posted prices. These mechanisms are simple, transparent and trivially dominant strategy incentive compatible (DSIC).We show that when agent preferences are fractionally subadditive (which includes all submodular functions), there always exist prices that, in expectation, obtain at least half of the optimal welfare. Our result is constructive: given black-box access to a combinatorial auction algorithm A, sample access to the prior distribution, and appropriate query access to the sampled valuations, one can compute, in polytime, prices that guarantee at least half of the expected welfare of A. As a corollary, we obtain the first polytime (in n and m) constant-factor DSIC mechanism for Bayesian submodular combinatorial auctions, given access to demand query oracles. Our results also extend to valuations with complements, where the approximation factor degrades linearly with the level of complementarity.
Budget feasible mechanisms, recently initiated by Singer (FOCS 2010), extend algorithmic mechanism design problems to a realistic setting with a budget constraint. We consider the problem of designing truthful budget feasible mechanisms for general submodular functions: we give a randomized mechanism with approximation ratio 7.91 (improving the previous best-known result 112), and a deterministic mechanism with approximation ratio 8.34. Further we study the knapsack problem, which is special submodular function, give a 2+ √ 2 approximation deterministic mechanism (improving the previous best-known result 6), and a 3 approximation randomized mechanism. We provide a similar result for an extended knapsack problem with heterogeneous items, where items are divided into groups and one can pick at most one item from each group.Finally we show a lower bound of approximation ratio of 1 + √ 2 for deterministic mechanisms and 2 for randomized mechanisms for knapsack, as well as the general submodular functions. Our lower bounds are unconditional, which do not rely on any computational or complexity assumptions.
Simultaneous item auctions are simple and practical procedures for allocating items to bidders with potentially complex preferences. In a simultaneous auction, every bidder submits independent bids on all items simultaneously. The allocation and prices are then resolved for each item separately, based solely on the bids submitted on that item. We study the efficiency of Bayes-Nash equilibrium (BNE) outcomes of simultaneous first-and second-price auctions when bidders have complement-free (a.k.a. subadditive) valuations. While it is known that the social welfare of every pure Nash equilibrium (NE) constitutes a constant fraction of the optimal social welfare, a pure NE rarely exists, and moreover, the full information assumption is often unrealistic. Therefore, quantifying the welfare loss in Bayes-Nash equilibria is of particular interest. Previous work established a logarithmic bound on the ratio between the social welfare of a BNE and the expected optimal social welfare in both first-price auctions (Hassidim et al. [11]) and second-price auctions (Bhawalkar and Roughgarden [2]), leaving a large gap between a constant and a logarithmic ratio. We introduce a new proof technique and use it to resolve both of these gaps in a unified way. Specifically, we show that the expected social welfare of any BNE is at least 1 /2 of the optimal social welfare in the case of first-price auctions, and at least 1 /4 in the case of second-price auctions.
Congestion games constitute an important class of games in which computing an exact or even approximate pure Nash equilibrium is in general PLS-complete. We present a surprisingly simple polynomial-time algorithm that computes O(1)-approximate Nash equilibria in these games. In particular, for congestion games with linear latency functions, our algorithm computes (2 + ǫ)-approximate pure Nash equilibria in time polynomial in the number of players, the number of resources and 1/ǫ. It also applies to games with polynomial latency functions with constant maximum degree d; there, the approximation guarantee is d O(d) . The algorithm essentially identifies a polynomially long sequence of best-response moves that lead to an approximate equilibrium; the existence of such short sequences is interesting in itself. These are the first positive algorithmic results for approximate equilibria in non-symmetric congestion games. We strengthen them further by proving that, for congestion games that deviate from our mild assumptions, computing ρ-approximate equilibria is PLS-complete for any polynomial-time computable ρ.
Several fairness concepts have been proposed recently in attempts to approximate envy-freeness in settings with indivisible goods. Among them, the concept of envy-freeness up to any item (EFX) is arguably the closest to envy-freeness. Unfortunately, EFX allocations are not known to exist except in a few special cases. We make significant progress in this direction. We show that for every instance with additive valuations, there is an EFX allocation of a subset of items with a Nash welfare that is at least half of the maximum possible Nash welfare for the original set of items. That is, after donating some items to a charity, one can distribute the remaining items in a fair way with high efficiency. This bound is proved to be best possible. Our proof is constructive and highlights the importance of maximum Nash welfare allocation. Starting with such an allocation, our algorithm decides which items to donate and redistributes the initial bundles to the agents, eventually obtaining an allocation with the claimed efficiency guarantee. The application of our algorithm to large markets, where the valuations of an agent for every item is relatively small, yields EFX with almost optimal Nash welfare. To the best of our knowledge, this is the first use of large market assumptions in the fair division literature. We also show that our algorithm can be modified to compute, in polynomial-time, EFX allocations that approximate optimal Nash welfare within a factor of at most 2ρ, using a ρ-approximate allocation on input instead of the maximum Nash welfare one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.