Several fairness concepts have been proposed recently in attempts to approximate envy-freeness in settings with indivisible goods. Among them, the concept of envy-freeness up to any item (EFX) is arguably the closest to envy-freeness. Unfortunately, EFX allocations are not known to exist except in a few special cases. We make significant progress in this direction. We show that for every instance with additive valuations, there is an EFX allocation of a subset of items with a Nash welfare that is at least half of the maximum possible Nash welfare for the original set of items. That is, after donating some items to a charity, one can distribute the remaining items in a fair way with high efficiency. This bound is proved to be best possible. Our proof is constructive and highlights the importance of maximum Nash welfare allocation. Starting with such an allocation, our algorithm decides which items to donate and redistributes the initial bundles to the agents, eventually obtaining an allocation with the claimed efficiency guarantee. The application of our algorithm to large markets, where the valuations of an agent for every item is relatively small, yields EFX with almost optimal Nash welfare. To the best of our knowledge, this is the first use of large market assumptions in the fair division literature. We also show that our algorithm can be modified to compute, in polynomial-time, EFX allocations that approximate optimal Nash welfare within a factor of at most 2ρ, using a ρ-approximate allocation on input instead of the maximum Nash welfare one.
We consider the problem of fairly dividing indivisible chores among agents. The fairness measure we consider here is the maximin share. The previous best known result is that there always exists a 43approximation maximin share allocation [3]. With our algorithm, we can always find a 11 9 -approximation maximin share allocation for any instance. We also discuss how to improve the efficiency of the algorithm and its connection to the job scheduling problem. The full paper can be found at https://arxiv.org/abs/1907.04505.CCS Concepts: • Theory of computation → Algorithmic game theory; Scheduling algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.