Protein quantification is a routine procedure in ecological studies despite the inherent limitations of well‐acknowledged protein determination methods which have been largely overlooked by ecologists. Thus, we want to bridge this knowledge gap, in hopes of improving the way ecologists quantify proteins and interpret findings.
We surveyed the ecological literature to determine how and why ecologists quantify proteins. To determine whether different quantification methods produce comparable results across taxa, and between populations of a single species, we estimated the protein content of eight phylogenetically diverse taxa, and of desert isopods fed different diets, using various derived protocols of the 'crude protein', Bradford and bicinchoninic acid approach (BCA) methods.
We found that ecologists use many protein quantification procedures, often without reporting the crucial information needed to evaluate and repeat their methods. Our empirical work demonstrated that the three quantification methods examined, and their derived protocols, resulted in highly divergent protein estimations that were inconsistent in rank across taxa, preventing conversion between methods. We also found that different quantification methods yielded different answers to whether isopod protein content is affected by diet.
We conclude that commonly used quantification techniques yield distinct protein estimations with varying precision, and no single method is likely to be more accurate than another across taxa which may lead to inconsistent results across taxa and between conspecifics. Inaccurate protein quantification may explain the observed mismatch between organismal N and protein that has plagued some recent studies and that contradicts the principles of ecological stoichiometry. We recommend using a single BCA protocol to reduce inconsistencies across studies, until the promising amino acid analysis becomes more affordable, accurate and accessible to ecologists. Until then, ecologists should consider the abovementioned drawbacks of protein quantification methods and interpret their results accordingly.
Animals adjust behaviors to balance changes in predation risk against other vital needs. Animals must therefore collect sensory information and use a complex risk-assessment process that estimates risks and weighs costs and benefits entailed in different reactions. Studying this cognitive process is challenging, especially in nature, because it requires inferring sensory abilities and conscious decisions from behavioral reactions. Our goal was to address this empirical challenge by implementing psychophysical principles to field research that explores considerations used by desert isopods (Hemilepistus reaumuri) to assess the risk of scorpions that hunt exclusively from within their burrows. We introduced various combinations of chemical and physical cues to the vicinity of isopod burrows and recorded their detailed reactions on first encountering the cues. The isopods reacted defensively to scorpion odor but only when accompanied with excavated soil or other odors typically found near scorpion burrows. Isopods also reacted defensively to piles of excavated soil without scorpion olfactory cues, suggesting that isopods take precautions even against physical disturbances that do not necessarily reflect predator activity. Simultaneous presence of different cues provoked graded responses, possibly reflecting an additive increase in risk estimation. We conclude that wild isopods use defensive reactions toward environmental signals only when the integrated perceptual information implies an active scorpion burrow or when they lack data to refute this possibility.
Many animals exhibit size assortative mating (SAM), but how predation affects it remains largely unknown. We hypothesized that predation risk may turn prey less choosy, disrupting SAM, or reduce the expected reproductive value of mates, maintaining SAM but with different size ratio between mates. Using a manipulative field experiment, we found that desert isopods under risk of scorpion predation maintained SAM, but that males that choose and fight over females were on average smaller for a given female size. Less pairs were formed in risky sites, but there were no differences in female sizes and progeny number, size and age near and away from scorpion burrows. Our complementary behavioral experiments revealed that bigger males stayed longer near safe burrows, and won more male-male contests than smaller conspecifics. Our findings highlight that prey can anticipate future costs of predation and use this information to assess the expected reproductive value of mates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.