Increase in mitochondrial biogenesis has been shown to accompany brown and white adipose cell differentiation. Prohibitins (PHBs), comprised of two evolutionarily conserved proteins, prohibitin-1 (PHB1) and prohibitin-2 (PHB2), are present in a high molecular-weight complex in the inner membrane of mitochondria. However, little is known about the effect of mitochondrial PHBs in adipogenesis. In the present study, we demonstrate that the levels of both PHB1 and PHB2 are significantly increased during adipogenesis of 3T3-L1 preadipocytes, especially in mitochondria. Knockdown of PHB1 or PHB2 by oligonucleotide siRNA significantly reduced the expression of adipogenic markers, the accumulation of lipids and the phosphorylation of extracellular signal-regulated kinases. In addition, fragmentation of mitochondrial reticulum, loss of mitochondrial cristae, reduction of mitochondrial content, impairment of mitochondrial complex I activity and excessive production of ROS were observed upon PHB-silencing in 3T3-L1 cells. Our results suggest that PHBs are critical mediators in promoting 3T3-L1 adipocyte differentiation and may be the potential targets for obesity therapies.
Current approaches to the treatment of ovarian cancer are limited because of the development of resistance to chemotherapy. Prohibitin (Phb1) is a possible candidate protein that contributes to development of drug resistance, which could be targeted in neoplastic cells. Phb1 is a highly conserved protein that is associated with a block in the G0/G1 phase of the cell cycle and also with cell survival. Our study was designed to determine the role of Phb1 in regulating cellular growth and apoptosis in ovarian cancer cells. Our results showed that Phb1 content is differentially overexpressed in papillary serous ovarian carcinoma and endometrioid ovarian adenocarcinoma when compared to normal ovarian epithelium and was inversely related to Ki67 expression. Immunofluorescence microscopy and Western analyses revealed that Phb1 is primarily associated with the mitochondria in ovarian cancer cells. Overexpression of Phb1 by adenoviral Phb1 infection resulted in an increase in the percentage of ovarian cancer cells accumulating at G0/G1 phase of the cell cycle. Treatment of ovarian cancer cells with staurosporine (STS) induced apoptosis in a time-dependent manner. Phb1 over-expression induced cellular resistance to STS via the intrinsic apoptotic pathway. In contrast, silencing of Phb1 expression by adenoviral small interfering RNA (siRNA) sensitized ovarian cancer cells to STS-induce apoptosis. Taken together, these results suggest that Phb1 induces block at G0/G1 phase of the cell cycle and promotes survival of cancer cells. Furthermore, silencing of the Phb1 gene expression may prove to be a valuable therapeutic approach for chemoresistant ovarian cancer by increasing sensitivity of cancer cells to apoptosis. ' 2008 Wiley-Liss, Inc.Key words: prohibitin; mitochondria; adenovirus; ovarian cancer; gene silencing Epithelial cancer of the ovary is the leading cause of death from gynecological malignancy worldwide and the sixth most common cancer in women with an incidence of~1 in 70 women in the developed world. A key feature of ovarian and other cancer is the uncontrolled proliferation, invasion and metastasis of cancer cells that overrides naturally occurring programmed cell death or apoptosis. Therefore, studies on the mechanisms that mediate or regulate apoptosis in cancer cells are likely to provide innovative strategies for developing novel chemotherapeutic or immunotherapeutic agents. Although significant improvements have been achieved in the treatment of ovarian carcinoma over the past decade, these successes have been limited because of the development of resistance to chemotherapy. Consequently, most women will ultimately die of the disease. Novel approaches that effectively target the mechanisms leading to the development of chemoresistance in these tumors will limit the toxicity to normal cells and reduce the dosage and duration of therapy.Prohibitin (Phb1) is a possible therapeutic target for drug resistant neoplastic cells. In humans, the prohibitin gene PHB1 is located on chromosome 17q21 close to the ovar...
Leptin-deficient (ob/ob) male mice are morbidly obese and exhibit impaired reproductive function. The objective of this study was to assess the effect of a leptin deficiency on testicular morphology, germ cell development, apoptotic activity within germ cells, and expression levels of apoptosis-related genes in the testis. Sixteen week-old ob/ob male mice (n ϭ 8) and controls (n ϭ 8) were killed, and their reproductive organs were weighed. Testes were processed for either histomorphological analysis (hematoxylin and eosin [H&E] staining), germ cell apoptosis assessment (deoxy-UTPdigoxigenin nick end labeling [TUNEL] method), or apoptosis-related gene expression analysis (microarray). Cross sections of the testes of leptin-deficient animals showed reduced seminiferous tubule area, fewer pachytene spermatocytes, and fewer tubules exhibiting elongated spermatids/mature spermatozoa. Condensation of germ cell nuclei and Sertoli cell vacuolization were evident in the testes of some ob/ob animals. Overall there was an elevation of apoptotic activity in the germ cells of ob/ob mice, particularly within the pachytene spermatocytes. With microarray technology, we identified 9 proapoptosis-related genes that were expressed at a significantly higher level in the testes of ob/ob mice than in the testes of the controls. Among these were members of the tumor necrosis factor receptor super family 1A and 5 (TNFR1 and 5) and peptidoglycan recognition proteins (associated with the extrinsic apoptotic pathway), and granzymes A and B, growth arrest and DNA damage inducible 45 gamma, sphingosine phosphate lyase 1, and caspase 9 (associated with the intrinsic apoptotic pathway). The results of the current study show that a leptin deficiency in mice is associated with impaired spermatogenesis, increased germ cell apoptosis, and upregulated expression of proapoptotic genes within the testes.
Aim Ceramide is a key factor in inducing germ cell apoptosis by translocating from cumulus cells into the adjacent oocyte and lipid rafts through gap junctions. Therefore studies designed to elucidate the mechanistic pathways in ceramide induced granulosa cell (GC) apoptosis and follicular atresia may potentially lead to the development of novel lipid-based therapeutic strategies that will prevent infertility and premature menopause associated with chemo and/or radiation therapy in female cancer patients. Our previous studies have shown that Prohibitin (PHB) is intimately involved in GCs differentiation, atresia, and luteolysis. Main methods In the present study, we have examined the functional effects of loss-/gain-of-function of PHB using adenoviral technology in delaying apoptosis induced by the physiological ligand ceramide in rat GCs. Key findings Under these experimental conditions, exogenous ceramide C-8 (50μM) augmented the expression of mitochondrial PHB and subsequently cause the physical destruction of GC by the release of mitochondrial cytochrome c and activation of caspase-3. In further studies, silencing of PHB expression by adenoviral small interfering RNA (shRNA) sensitized GCs to ceramide C8-induce apoptosis. In contrast, adenovirus (Ad) directed overexpression of PHB in GCs resulted in increased PHB content in mitochondria and delayed the onset of ceramide induced apoptosis in the infected GCs. Significance Taken together, these results provide novel evidences that a critical level of PHB expression within the mitochondria plays a key intra-molecular role in GC fate by mediating the inhibition of apoptosis and may therefore, contribute significantly to ceramide induced follicular atresia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.