We consider a helical system of fermions with a generic spin (or pseudospin) orbit coupling. Using the equation of motion approach for the single-particle distribution functions, and a meanfield decoupling of the higher order distribution functions, we find a closed form for the charge and spin density fluctuations in terms of the charge and spin density linear response functions. Approximating the nonlocal exchange term with a Hubbard-like local-field factor, we obtain coupled spin and charge density response matrix beyond the random phase approximation, whose poles give the dispersion of four collective spin-charge modes. We apply our generic technique to the wellexplored two-dimensional system with Rashba spin-orbit coupling and illustrate how it gives results for the collective modes, Drude weight, and spin-Hall conductivity which are in very good agreement with the results obtained from other more sophisticated approaches.
The effect of the magnetic impurities on the charge transport in a magnetic topological ultra-thin film (MTF) is analytically investigated by applying the semi-classical Boltzmann framework through a modified relaxation-time approximation. Our results for the relaxation time of electrons as well as the charge conductivity of the system exhibit two distinct regimes of transport. We show that the generated charge current in a MTF is always dissipative and anisotropic when both conduction bands are involved in the charge transport. The magnetic impurities induce a chirality selection rule for the transitions of electrons which can be altered by changing the orientation of the magnetic impurities. On the other hand, when a single conduction band participates in the charge transport, the resistivity is isotropic and can be entirely suppressed due to the corresponding chirality selection rule. Our findings propose a method to determine an onset thickness at which a crossover from a three-dimensional magnetic topological insulator to a (two-dimensional) MTF occurs.
We study the effect of structural inversion asymmetry, induced by the presence of substrates or by external electric fields, on charge transport in magnetic topological ultra-thin films. We consider general orientations of the magnetic impurities. Our results are based on the Boltzmann formalism along with a modified relaxation time scheme. We show that the structural inversion asymmetry enhances the charge transport anisotropy induced by the magnetic impurities and when only one conduction subband contributes to the charge transport a dissipationless charge current is accessible. We demonstrate how a substrate or gate voltage can control the effect of the magnetic impurities on the charge transport, and how this depends on the orientation of the magnetic impurities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.