Road extraction from very high resolution sensors is a very popular topic in panchromatic and multispectral remote sensing image analysis. Despite the vast number of methods proposed in the literature to deal with this problem, in practice, most are quite limited and do not account for geometric and radiometric variability. Our aim is to propose a novel road extraction approach able to efficiently extract roads and reduce computation time using texture analysis and multiscale reasoning based on the beamlet transform. The proposed methodology consists of two stages: 1) road edge candidate selection and 2) multiscale reasoning with the beamlet transform. In the first step, mathematical morphology is applied to distinguish rectilinear structures, and road edge candidates are identified using the Canny edge detector. In the second phase, multiscale reasoning using the beamlet transform allows local and global information to be combined. Global information is introduced to distinguish main road axes at coarser scales, and local segments in finer scales, which are aggregated to reconstruct the road network. Rules based on the spatial relationships between segments belonging to different levels of resolution are also introduced at this stage. The experiments are performed based on the images acquired from the city of Portau-Prince in Haiti during the earthquake of January 2010. The results demonstrate the accuracy and efficiency of our algorithm.
Nowadays, satellite images are considered as one of the most relevant sources of information in the context of major disasters management. Their availability in extreme weather conditions and their ability to cover wide geographic areas make them an indispensable tool toward an effective disaster response. Among the various available sensors, Synthetic Aperture Radar (SAR) is distinguished in the context of flood management by its ability to penetrate cloud cover and its robustness to unfavourable weather conditions. This work aims at developing a new technique for flooded areas extraction from high resolution time-series SAR images. The proposed approach is mainly based on three steps: first, homogeneous regions characterizing water surfaces are extracted from each SAR image using a local texture descriptor. Then, mathematical morphology is applied to filter tiny artifacts and small homogeneous areas present in the image. And finally, spatial and radiometric information embedded in each pixel are extracted and are fused with the same pixel information but from another image to decide if the current pixel belongs to a flooded region. In order to assess the performance of the proposed algorithm, our methodology was applied to time-series images acquired before and during three different flooding events: (1) Richelieu River and lake Champlain floods, Quebec, Canada in 2011; (2) Evros River floods, Greece in 2014 and (3) Western and southwestern of Iran floods in 2016. Experiments show that our approach gives very promising results compared to existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.