The evaluation of the minimum distance of linear block codes remains an open problem in coding theory, and it is not easy to determine its true value by classical methods, for this reason the problem has been solved in the literature with heuristic techniques such as genetic algorithms and local search algorithms. In this paper we propose two approaches to attack the hardness of this problem. The first approach is based on genetic algorithms and it yield to good results comparing to another work based also on genetic algorithms. The second approach is based on a new randomized algorithm which we call "Multiple Impulse Method (MIM)", where the principle is to search codewords locally around the all-zero codeword perturbed by a minimum level of noise, anticipating that the resultant nearest nonzero codewords will most likely contain the minimum Hamming-weight codeword whose Hamming weight is equal to the minimum distance of the linear code
A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA). The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR) codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.
In this paper we present a new method for finding the weight enumerator of binary linear block codes by using genetic algorithms. This method consists in finding the binary weight enumerator of the code and its dual and to create from the famous MacWilliams identity a linear system (S) of integer variables for which we add all known information obtained from the structure of the code. The knowledge of some subgroups of the automorphism group, under which the code remains invariant, permits to give powerful restrictions on the solutions of (S) and to approximate the weight enumerator. By applying this method and by using the stability of the Extended Quadratic Residue codes (ERQ) by the Projective Special Linear group PSL 2 , we find a list of all possible values of the weight enumerators for the two ERQ codes of lengths 192 and 200. We also made a good approximation of the true value for these two enumerators.
In this paper, we describe a hard-decision decoding technique based on Genetic Algorithms (HDGA), which is applicable to the general case of error correcting codes where the only known structure is given by the generating matrix G. Then we present a new soft-decision decoding based on HDGA and the Chase algorithm (SDGA). The performance of some binary and non-binary Linear Block Codes are given for HDGA and SDGA over Gaussian and Rayleigh channels. The performances show that the HDGA decoder has the same performances as the Berlekamp-Massey Algorithm (BMA) in various transmission channels. On the other hand, the performances of SDGA are equivalent to soft-decision decoding using Chase algorithm and BMA (Chase-BMA). The complexity of decoders proposed is also discussed and compared to those of other decoders
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.