While citrus waste is abundantly generated, the disposal methods used today remain unsatisfactory: they can be deleterious for ruminants, can cause soil salinity, or are not economically feasible; yet citrus waste consists of various valuable polymers. This paper introduces a novel environmentally safe approach that utilizes citrus waste polymers as a biobased and biodegradable film, for example, for food packaging. Orange waste has been investigated for biofilm production, using the gelling ability of pectin and the strength of cellulosic fibres. A casting method was used to form a film from the previously washed, dried, and milled orange waste. Two film-drying methods, a laboratory oven and an incubator shaker, were compared. FE-SEM images confirmed a smoother film morphology when the incubator shaker was used for drying. The tensile strength of the films was 31.67 ± 4.21 and 34.76 ± 2.64 MPa, respectively, for the oven-dried and incubator-dried films, which is within the range of different commodity plastics. Additionally, biodegradability of the films was confirmed under anaerobic conditions. Films showed an opaque appearance with yellowish colour.
This work shows that incorporating highly compatible polyrhodanine nanoparticles (PRh-NPs) into a polyamide (PA) active layer allows for fabricating forward osmosis (FO) thin-film composite (TFC)-PRh membranes that have simultaneously improved antimicrobial, antifouling, and transport properties. To the best of our knowledge, this is the first reported study of its kind to this date. The presence of the PRh-NPs on the surface of the TFC-PRh membranes active layers is evaluated using FT-IR spectroscopy, SEM, and XPS. The microscopic interactions and their impact on the compatibility of the PRh-NPs with the PA chains were studied using molecular dynamics simulations. When tested in forward osmosis, the TFC-PRh-0.01 membrane (with 0.01 wt % PRh) shows significantly improved permeability and selectivity because of the small size and the high compatibility of the PRh-NPs with PA chains. For example, the TFC-PRh-0.01 membrane exhibits a FO water flux of 41 l/(m·h), higher than a water flux of 34 l/(m·h) for the pristine TFC membrane, when 1.5 molar NaCl was used as draw solution in the active-layer feed-solution mode. Moreover, the reverse solute flux of the TFC-PRh-0.01 membrane decreases to about 115 mmol/(m·h) representing a 52% improvement in the reverse solute flux of this membrane in comparison to the pristine TFC membrane. The surfaces of the TFC-PRh membranes were found to be smoother and more hydrophilic than those of the pristine TFC membrane, providing improved antifouling properties confirmed by a flux decline of about 38% for the TFC-PRh-0.01 membranes against a flux decline of about 50% for the pristine TFC membrane when evaluated with a sodium alginate solution. The antimicrobial traits of the TFC-PRh-0.01 membrane evaluated using colony-forming units and fluorescence imaging indicate that the PRh-NPs hinder cell deposition on the TFC-PRh-0.01 membrane surface effectively, limiting biofilm formation.
Novel lightweight and highly thermal insulative aerogel-doped poly(vinyl chloride)-coated fabric composites were prepared on woven fabrics made of polyester fibres using knife coating method, and their performances were compared with neat composite. The composites were prepared by incorporating a commercial aerogel to a 'green' poly(vinyl chloride) (PVC) plastisol. The effect of aerogel-content, thermal insulating property, thermal degradation, surface characteristics, tensile and physical properties of the composites were investigated. Results revealed that aerogel could reduce thermal conductivity, density and hydrophilicity of the composites dramatically without significant decrease in other properties. Experimental results showed that thermal insulation properties were enhanced by $26% (from 205 to 152 mW/m-K), density decreased by $17% (from 1.132 to 0.941 g/cm 3 ) and hydrophobicity increased by 16.4% (from 76.02 to 88.67 AE 1.48 ) with respect to the unmodified coated fabric. Analyses proved that composite with 3% aerogel is the lightest by weight, while 4% showed the highest thermal insulation. The results showed that 4% is the critical percentage, and preparation of composites with aerogel content higher than 4% has limitations with the given formulation due to high viscosity of plastisol. The prepared composite has potential applications in many fields such as development of textile bioreactors for ethanol/biogas production from waste materials, temporary houses and tents, facade coverings, container linings and tarpaulins. The prepared composite can be considered 'green' due to usage of a non-phthalate environment-friendly plasticiser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.