An experimental investigation on the mechanical performance of interlayer hybrid flax-basalt-glass woven fabrics reinforced epoxy composite laminates has been performed. The tensile, flexural, in-plane shear, interlaminar shear, bearing, and impact properties of the fabricated laminates were investigated. Test specimens were fabricated using vacuum bagging process. Failure modes of all specimens were recorded and discussed. Results proved that the mechanical properties of flax-basalt-glass hybrid laminates are highly dominated by the reinforcement combinations and plies stacking sequence. Hybridizing flax fiber reinforced composite with basalt and/or glass fabrics provides an effective method for enhancing its tensile, flexural, in-plane shear, interlaminar shear, and bearing properties as well as controls the impact strength of the composite. The fabricated hybrids are found to have good specific mechanical properties benefits. Amongst the studied flax/basalt/glass hybrids, FBGs has the highest tensile properties, GBFs has the highest flexural and impact properties, and GFBs has the best shear and bearing properties. Flax-basalt-glass hybrid composites with different layering sequence seem to be an appropriate choice for lightweight load bearing structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.