Stem cells serve as potential therapeutics due to their high proliferative capacity, low immunogenic reactivity and their differentiating capabilities. Several pre-clinical and early-stage clinical studies are carried out to treat genetic diseases, cancers and neurodegenerative disorders with promising preliminary results. However, there are still many challenges that scientists are trying to overcome such as the unclear expression profile of stem cells in vivo, the homing of stem cells to the site of injury and their potential immune-reactivity. Prospective research lies in gene editing of autologous stem cells in vitro and safe injection of these modified cells back into patients. Here, we review the clinical trials executed using stem cell therapy in an attempt to cure challenging diseases like cancer, Parkinson’s and Alzheimer’s diseases.
Psychiatric disorders such as anxiety, phobias, and post-traumatic stress disorder are considered of high global prevalence. Currently, a therapeutic approach to treat these disorders using beta-blockers, which antagonize the beta-adrenergic receptors (B1, B2, and B3) is being studied. This approach claims that beta-blockers, such as propranolol, inhibit fear memory reconsolidation. However, there are several studies refuting such claims by discrediting their experimental design and pointing out both the drugs pharmacokinetic properties and confounding factors. In this review, we explore the different effects of central beta-adrenergic agonists and antagonists on the fear memory consolidation providing mixed-evidence, limitations, and future directions. K E Y W O R D S beta blockers, fear memories, reconsolidation
Ribonucleoside monophosphate (rNMP) incorporation in genomic DNA poses a significant threat to genomic integrity. In addition to repair, DNA damage tolerance mechanisms ensure replication progression upon encountering unrepaired lesions. One player in the tolerance mechanism is Rad5, which is an E3 ubiquitin ligase and helicase. Here, we report a new role for yeast Rad5 in tolerating rNMP incorporation, in the absence of the bona fide ribonucleotide excision repair pathway via RNase H2. This role of Rad5 is further highlighted after replication stress induced by hydroxyurea or by increasing rNMP genomic burden using a mutant DNA polymerase (Pol ε - Pol2-M644G). We further demonstrate the importance of the ATPase and ubiquitin ligase domains of Rad5 in rNMP tolerance. These findings suggest a similar role for the human Rad5 homologues helicase-like transcription factor (HLTF) and SNF2 Histone Linker PHD RING Helicase (SHPRH) in rNMP tolerance, which may impact the response of cancer cells to replication stress-inducing therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.