the content based color image retrieval has great interest nowadays. In this paper, we have proposed a new approach for such systems. The proposed approach employs two main phases in train and test. At the first phase, color features are extracted based on RGB color space and texture are represented by Texton. In the second phase, the images are clustered based on extracted features using a Self-Organizing Map (SOM) neural network, the experimental results showed the method performance versus related works.
Nowadays, a huge number of images are available. However, retrieving a required image for an ordinary user is a challenging task in computer vision systems. During the past two decades, many types of research have been introduced to improve the performance of the automatic annotation of images, which are traditionally focused on content-based image retrieval. Although, recent research demonstrates that there is a semantic gap between content-based image retrieval and image semantics understandable by humans. As a result, existing research in this area has caused to bridge the semantic gap between low-level image features and high-level semantics. The conventional method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, we propose a novel AIA model based on the deep learning feature extraction method. The proposed model has three phases, including a feature extractor, a tag generator, and an image annotator. First, the proposed model extracts automatically the high and low-level features based on dual tree continues wavelet transform (DT-CWT), singular value decomposition, distribution of color ton, and the deep neural network. Moreover, the tag generator balances the dictionary of the annotated keywords by a new logentropy auto-encoder (LEAE) and then describes these keywords by word embedding. Finally, the annotator works based on the long-short-term memory (LSTM) network in order to obtain the importance degree of specific features of the image. The experiments conducted on two benchmark datasets confirm that the superiority of proposed model compared to the previous models in terms of performance criteria. Keywords-Automatic image annotation; attention model; skewed learning; deep learning, word embedding; log-entropy auto encoderI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.