To date, the preponderance of techniques for eliciting the knowledge embedded in trained artificial neural networks (ANN's) has focused primarily on extracting rule-based explanations from feedforward ANN's. The ADT taxonomy for categorizing such techniques was proposed in 1995 to provide a basis for the systematic comparison of the different approaches. This paper shows that not only is this taxonomy applicable to a cross section of current techniques for extracting rules from trained feedforward ANN's but also how the taxonomy can be adapted and extended to embrace a broader range of ANN types (e.g., recurrent neural networks) and explanation structures. In addition the paper identifies some of the key research questions in extracting the knowledge embedded within ANN's including the need for the formulation of a consistent theoretical basis for what has been, until recently, a disparate collection of empirical results.
We consider a Perceptron with N i input units, one output and a yet unspecified number of hidden units. This Perceptron must be able to learn a given but arbitrary set of input-output examples. By sequential learning we mean that groups of patterns, pertaining to the same class, are sequentially separated from the rest by successively adding hidden units until the remaining patterns are all in the same class. We prove that the internal representations obtained by such procedures are linearly separable. Preliminary numerical tests of an algorithm implementing these ideas are presented and compare favourably with results of other growth algorithms.
This paper explores the application of neural network principles to the construction of decision trees from examples. We consider the problem of constructing a tree of perceptrons able to execute a given but arbitrary Boolean function defined on N i input bits. We apply a sequential (from one tree level to the next) and parallel (for neurons in the same level) learning procedure to add hidden units until the task in hand is performed. At each step, we use a perceptron-type algorithm over a suitable defined input space to minimise a classification error. The internal representations obtained in this way are linearly separable. Preliminary results of this algorithm are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.