To date, the preponderance of techniques for eliciting the knowledge embedded in trained artificial neural networks (ANN's) has focused primarily on extracting rule-based explanations from feedforward ANN's. The ADT taxonomy for categorizing such techniques was proposed in 1995 to provide a basis for the systematic comparison of the different approaches. This paper shows that not only is this taxonomy applicable to a cross section of current techniques for extracting rules from trained feedforward ANN's but also how the taxonomy can be adapted and extended to embrace a broader range of ANN types (e.g., recurrent neural networks) and explanation structures. In addition the paper identifies some of the key research questions in extracting the knowledge embedded within ANN's including the need for the formulation of a consistent theoretical basis for what has been, until recently, a disparate collection of empirical results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.