Utilization of mine wastes as a building material in the construction industry surmises to environmental and sustainable concepts in civil engineering.The potential environmental threat posed by mining wastes, as well as a growing societal awareness of the need to effectively treat mining wastes, has elevated the subject importance.The present research proposes a method of producing bricks that is both cost effective and environmentally benign. The research is based on the geopolymerization, known to save energy by obviating high-temperature kiln firing and lowering greenhouse gas emissions. The methodology encompasses the mixing of red mud and iron ore tailings in the range of 90% to 50% with a decrement of 10% with GGBS in the range of 10% to 50% with an increment of 10%. The raw materials and the developed composites have been tested as per Indian and ASTM standards.In addition to tests pertaining to the physical and mechanical properties, XRF, XRD, and SEM tests have been performed for examining various related issues. Based on the result analysis, the compressive strength values showed noticeable differences in case of IOT and red mud bricks with IOT-based bricks showing better compressive strengths.
In India, due to fast pace development there is a drastic growth in the iron and steel industry. As of 2017, India is one of the largest producers of crude steel in the world. This has led to drastic increase in mining activity. Mining activity is responsible for generation of wastes, which can pose threat to the environment and its habitants. However, there is also a great potential for mines wastes to be utilized in construction industry, which can become an important ingredient for sustainable and eco-friendly development. In iron and steel industry, Iron ore tailings (IOT) and slimes utilization is still an area of challenge, because of the low content of iron oxide present in them, which is unsuitable for metal extraction. Usually particle size of slimes below 1 mm is not amenable for further metal extraction through conventional pelletization techniques. In the present study waste from two different iron ore mines have been tried for their utilization as a construction material through geopolymerisation technology. As a primary consideration, shapes made in the form of common bricks were tested for their densification behavior, compressive strength and water absorption. To reduce the cost, industrial wastes like fly ash, ground granulated blast furnace slag, and lime were tried in different batch compositions in addition to sodium silicate and sodium hydroxide. Relationship between compressive strength values with individual ratio of silica to alumina (Si/Al), silica to alumina with iron combined (Si/Al + Fe), and calcium to silica (Ca/Si) were developed. Based on the elemental ratios, critical threshold values were established that showed significant effect on the compressive strength of the final composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.