Arctic cyclone activity is investigated in the context of climate change and variability by using a modified automated cyclone identification and tracking algorithm, which differs from previously used algorithms by single counting each cyclone. The investigation extends earlier studies by lengthening the time period to 55 yr (1948-2002) with a 6-hourly time resolution, by documenting the seasonality and the dominant temporal modes of variability of cyclone activity, and by diagnosing regional activity as quantified by the cyclone activity index (CAI). The CAI integrates information on cyclone intensity, frequency, and duration into a comprehensive index of cyclone activity. Arctic cyclone activity has increased during the second half of the twentieth century, while midlatitude activity generally decreased from 1960 to the early 1990s, in agreement with previous studies. New findings include the following. 1) The number and intensity of cyclones entering the Arctic from the midlatitudes has increased, suggesting a shift of storm tracks into the Arctic, particularly in summer. 2) Positive tendencies of midlatitude cyclone activity before and after the 1960-93 period of decreasing activity correlate most strongly with variations of cyclone activity in the North Atlantic and Eurasian sectors. 3) Synchronized phase and amplitude variations in cyclone activity over the Arctic Ocean (70Њ-90ЊN) and the Arctic marginal zone (60Њ-70ЊN) play a critical role in determining the variations of cyclone activity in the Arctic as a whole. 4) Arctic cyclone activity displays significant low-frequency variability, with a negative phase in the 1960s and a positive phase in the 1990s, upon which 7.8-and 4.1-yr oscillations are superimposed. The 7.8-yr signal generally corresponds to the alternation of the cyclonic and anticyclonic regimes of the Arctic sea ice and ocean motions.
Recent record lows of Arctic summer sea ice extent are found to be triggered by the Arctic atmospheric Dipole Anomaly (DA) pattern. This local, second–leading mode of sea–level pressure (SLP) anomaly in the Arctic produced a strong meridional wind anomaly that drove more sea ice out of the Arctic Ocean from the western to the eastern Arctic into the northern Atlantic during the summers of 1995, 1999, 2002, 2005, and 2007. In the 2007 summer, the DA also enhanced anomalous oceanic heat flux into the Arctic Ocean via Bering Strait, which accelerated bottom and lateral melting of sea ice and amplified the ice–albedo feedback. A coupled ice–ocean model was used to confirm the historical record lows of summer sea ice extent.
Observational and modeling studies have indicated recent large changes of sea ice and hydrographic properties in the Arctic Ocean. However, the observational database is sufficiently sparse that the mechanisms responsible for the recent changes are not fully understood. A coupled Arctic ocean–sea ice model forced by output from the NCEP–NCAR reanalysis is employed to investigate the role that the leading atmospheric mode has played in the recent changes of the Arctic Ocean. A modified Arctic Oscillation (AO) index is derived for the region poleward of 62.5°N in order to avoid ambiguities in the distinction between the conventional AO and the North Atlantic Oscillation index. The model results indicate that the AO is the driver of many of the changes manifested in the recent observations. The model shows reductions of Arctic sea ice area and volume by 3.2% and 8.8%, respectively, when the AO changes from its negative to its positive phase. Concurrently, freshwater storage decreases by about 2%, while the sea ice and freshwater exports via Fram Strait increase substantially. The changes of sea ice and freshwater storage are strikingly asymmetric between the east and the west Arctic. Notable new findings include 1) the interaction of the dynamic and thermodynamic responses in the sense that changes of sea ice growth and melt are driven by, and feed back negatively to, the dynamically (transport) driven changes of sea ice volume; and 2) the compatibility of the associated freshwater changes with recently observed changes in the salinity of the upper Arctic Ocean, thereby explaining the observed salinity variations by a mechanism that is distinct from, but complementary to, the altered circulation of Siberian river water. In addition, the enhanced freshwater export could be a contributing factor to the increased salinity in the Arctic Ocean. The results of the simulations indicate that Arctic sea ice and freshwater distributions change substantially if one phase of the AO predominates over a decadal timescale. However, such results are based on an idealization of the real-world situation, in which the pattern of forcing varies interannually and the number of positive-AO years varies among decades.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.