To clarify the cause of sex change recovery after the withdrawal of androgen treatment, immature female Malabar grouper were fed a diet containing 17alpha-methyltestosterone (MT) at 50 μg/g for 7 mo and then a normal diet for 6 mo. The MT brought about precocious sex change from immature ovaries to mature testes with active spermatogenesis, including the development of spermatozoa, and sex change reversed soon after MT treatment withdrawal. This result indicates that precocious sex change in immature Malabar grouper with oral MT treatment is impermanent. The expression of three steroidogenic enzymes (Cyp11a, Cyp19a1a, and Cyp11b) in the gonads of the Malabar grouper were analyzed immunohistochemically at the end of the 7-mo treatment. No apparent differences were seen in the expression pattern of these enzymes between the mature testes of MT-treated fish and the immature ovaries of control fish. In addition, serum estradiol-17beta and 11-ketotestosterone levels in treated fish were the same as those in control fish. These results indicate that in the case of immature Malabar grouper MT might have little effect on endogenous steroidogenesis during precocious sex change even though it induced active spermatogenesis in the gonads of treated fish. From these results, we also concluded that MT might have little effect on the steroidogenic endocrine pathway, and this is one cause of sex change recovery after treatment withdrawal.
To understand the mechanism of sex differentiation in the protogynous Malabar grouper Epinephelus malabaricus, we performed an immunohistochemical investigation of the expression of three steroidogenic enzymes, cholesterol-side-chain-cleavage enzyme (CYP11a), aromatase (CYP19a1a), and cytochrome P45011beta-hydroxylase (CYP11b), in the gonads during ovarian differentiation. Strong positive immunoreactivity against CYP11a, the key enzyme of steroidogenesis, and CYP19a1a which is essential for estrogen (17beta-estradiol) production, appeared first in the somatic cells surrounding gonial germ cells in undifferentiated gonads and throughout ovarian differentiation. However, positive immunoreactivity against CYP11b, which is important for androgen (11-ketotestosterone) production, first appeared in the cluster of somatic cells in the ovary tunica near the dorsal blood vessel after differentiation. CYP19a1a and CYP11b did not co-localize in any cells. These results indicate that there are two types of steroid-producing cells, estrogen-producing cells and androgen-producing cells, in the gonads of this fish, and they are distributed differently, suggesting that these cells are derived from different somatic cells. Estrogen-producing cells appeared prior to ovarian differentiation, while androgen-producing cells were first detected after ovarian differentiation. These results suggest that endogenous estrogen is involved in ovarian differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.