Most of the 80-year-old individuals recovered their masticatory ability with the assistance of prostheses. Several individuals with 20 or more remaining teeth or without removable dentures present in both jaws had a high score for bite forces and masticatory abilities.
NLRP3 inflammasomes play crucial roles in the initiation of host defense by converting pro-Caspase-1 to mature Caspase-1, which in turn processes immature IL-1β and IL-18 into their biologically active forms. Although NLRP3 expression is restricted to monocytic lineages such as monocytes, macrophages, and dendritic cells, the mechanisms determining the lineage-specific expression of NLRP3 remain largely unknown. In this study, we investigated the transcription factors involved in cell-type-specific transcription of NLRP3. We found that a distal, rather than a proximal, promoter of human NLRP3 was predominantly used in the human monocytic cell lines and macrophages. Reporter analysis showed that an Ets/IRF composite element (EICE) at -309/-300 and an Ets motif at +5/+8 were critical for transcriptional activity of the distal promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays demonstrated that two transcription factors, PU.1 and IRF8, both of which play essential roles in development and gene expression of the monocytic lineage, were bound to the EICE site, whereas PU.1 alone was bound to the Ets site. Knockdown of PU.1 and/or IRF8 mediated by small interfering RNA downregulated expression of NLRP3 and related molecules and markedly diminished the LPS-induced release of IL-1β in THP-1, suggesting that activity of the NLRP3 inflammasome was suppressed by knockdown of PU.1 and IRF8. Taken together, these results indicate that PU.1 and IRF8 are involved in the monocytic lineage-specific expression of NLRP3 by binding to regulatory elements within its promoter and that PU.1 and IRF8 are potential targets for regulating the activity of the NLRP3 inflammasome.
To encourage the recycling of spent SiC abrasive powders, we investigated the synthesis of CNTs from several types of powders. The surface decomposition method was applied to as-received powders, and graphite was observed on the SiC surface but CNTs were not. This could be caused by the turbulence of the crystal structure and Fe contaminants on the SiC surface. On the other hand, from TEM observations we found that particle covered of CNTs could be synthesized by applying the surface decomposition method to powders pretreated by acid and heat, because the turbulence of the crystal structure on the surface could be improved and Fe contaminants could be removed. Consequently, the spent SiC abrasive powders pretreated by acid and heat could be used as a resource for synthesizing CNT particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.