The voltage-gated sodium channel is a transmembrane protein essential for the generation of action potentials in excitable cells. It has been reported that sodium channels purified from the electric organ of the electric eel, Electrophorus electricus, and from chick cardiac muscle consist of a single polypeptide of relative molecular mass (Mr) approximately 260,000, whereas those purified from rat brain and from rat and rabbit skeletal muscle contain, in addition to the large polypeptide, one or two smaller polypeptides of Mr 33,000-43,000. The primary structures of the Electrophorus sodium channel and two distinct sodium channel large polypeptides (designated as sodium channels I and II) from rat brain have been elucidated by cloning and sequencing the complementary DNAs. The purified sodium channel preparations from Electrophorus electroplax and from mammalian muscle and brain, when reconstituted into lipid vesicles or planar lipid bilayers, exhibit some functional activities. The successful reconstitution with the Electrophorus preparation would imply that the large polypeptide alone is sufficient to form functional sodium channels. However, studies with the rat brain preparation suggest that the smaller polypeptide of Mr 36,000 is also required for the integrity of the saxitoxin (STX) or tetrodotoxin (TTX) binding site of the sodium channel. Here we report that the messenger RNAs generated by transcription of the cloned cDNAs encoding the rat brain sodium channel large polypeptides, when injected into Xenopus oocytes, can direct the formation of functional sodium channels.
The neuropeptide receptors which are present in very small quantities in the cell and are embedded tightly in the plasma membrane have not been well characterized. Mammals contain three distinct tachykinin neuropeptides, substance P, substance K and neuromedin K, and it has been suggested that there are multiple tachykinin receptors. By electrophysiological measurement, we have previously shown that Xenopus oocytes injected with brain and stomach mRNAs faithfully express mammalian substance-P and substance-K receptors, respectively. Here we report the isolation of the cDNA clone for bovine substance-K receptor (SKR) by extending this method to develop a new cloning strategy. We constructed a stomach cDNA library with a cloning vector that allowed in vitro synthesis of mRNAs and then identified a particular cDNA clone by testing for receptor expression following injection of the mRNAs synthesized in vitro into the oocyte system. Because oocytes injected with exogenous mRNAs can express numerous receptors and channels, our new strategy will be applicable in the general molecular cloning of these proteins. The result provides the first indication that the neuropeptide receptor has sequence similarity with rhodopsin-type receptors (the G-protein-coupled receptor family) and thus possesses multiple membrane-spanning domains.
The availability of cloned cDNAs encoding the four subunits of the Torpedo acetylcholine receptor, which can be expressed to make functional receptors in Xenopus oocytes, has made possible a detailed investigation of the functions of the different structural components of the receptor. The functional analysis of receptors with alpha-subunits altered at specific sites by site-directed mutagenesis of the cDNA has allowed the location of specific regions of the alpha-subunit molecule involved in acetylcholine binding and forming a transmembrane ionic channel.
SUMMARY1. End-plate potentials were recorded intracellularly at the frog neuromuscular junction bathed in a solution containing a low concentration of calcium and a high concentration of magnesium.2. The muscle was subsequently subjected to 'cholinesterase staining', and the area of the individual end-plates, studied with intracellular electrodes, was measured.3. A positive correlation was found between the end-plate area and the diameter of muscle fibres.4. The mean quantum content (m) showed a positive correlation with the size of end-plates.5. The frequency of spontaneous miniature end-plate potentials was positively correlated with m as well as with end-plate area.6. It is concluded that the amount of transmitter released following nerve stimulation is related to the size of nerve endings.
The cloned cDNAs encoding the four subunits of the Torpedo californica acetylcholine receptor, each carried by a simian virus 40 vector, direct the synthesis of the functional receptor in a combined expression system consisting of COS monkey cells and Xenopus oocytes. Our results suggest that all four subunits are required to elicit a normal nicotinic response to acetylcholine, whereas only the alpha-subunit is indispensable for alpha-bungarotoxin binding activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.