Misinformation and misleading actions have appeared as soon as COVID-19 vaccinations campaigns were launched, no matter what the country’s alphabetization level or growing index is. In such a situation, supervised machine learning techniques for classification appears as a suitable solution to model the value & veracity of data, especially in the Arabic language as a language used by millions of people around the world. To achieve this task, we had to collect data manually from SM platforms such as Facebook, Twitter and Arabic news websites. This paper aims to classify Arabic language news into fake news and real news, by creating a Machine Learning (ML) model that will detect Arabic fake news (DAFN) about COVID-19 vaccination. To achieve our goal, we will use Natural Language Processing (NLP) techniques, which is especially challenging since NLP libraries support for Arabic is not common. We will use NLTK package of python to preprocess the data, and then we will use a ML model for the classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.