If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information. About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation. AbstractPurpose -The aim of this paper is to illustrate a solution that can be used to reduce the severity of breakdowns and improve performances in the cellular manufacturing (CM) system with unreliable machines. Design/methodology/approach -The performance of CM system is conditioned by disruptive events, such as the failure of machines, which randomly occurs and penalizes the performance of the cells, seriously disturbing the smooth working of the factory. To overcome the problem caused by the breakdowns, the authors develop a solution, based on the principle of virtual cell and the notion of intercellular transfer that can improve the availability of the system. In this context, the use an analytical method based on Markov chains to model the availability of the cell. The results are validated using simulation. Findings -The proposed solution in this paper confirmed that it is possible to reduce the severity of breakdowns in the CM system and improve the availability of the cells through an intercellular transfer created at the time of a breakdown. Simulation allowed a validation of the analytical model and showed the contribution of the suggested solution. Originality/value -The developed approach studies the performance of the production cells formed by unreliable machines. It uses the notion of the intercellular transfer to improve the availability of the cells.
Cellular manufacturing is an application of a group technology used to improve the performance of manufacturing systems. A number of factors, including vulnerability to machine breakdown, under utilization of resources and eventual unbalanced workload distribution in a multi-cell plan disturb the smooth working of the factory when using the group technology concept. This paper focuses on a manufacturing cell composed of unreliable machines. We are interested in the problem of cell production availability facing unexpected circumstances due to an internal perturbation caused by machine breakdown. We consider a policy of intercellular transfer in the event of breakdown to improve the availability of the cells. We examine through simulation the performance of the system and evaluate the intercellular transfer policy in terms of some selected criteria. The results indicate, under the assumed conditions, that the developed policy improves the performance of the production cells.
Manufacturing System (MS) sizing is a crucial task to complete in order to obtain the desired MS performance and efficiency. It involves selecting the required number of resources from each used type in a given planning horizon. In fact, different approaches coupling simulation/optimization tools have been developed to solve this issue and evaluate the MS performance. One of these approaches is the Simulation Expert System Approach (SESA). Unfortunately, the application domain of this approach is limited in sizing only the production resources (machines and labor) but neglects the material handling system (MHS) components. Moreover, omitting the transferring problem is not viable in the real world due to its importance in each shop floor. Thus, the aim of this paper is to describe the evolution of SESA, then, to check if the simulation optimization tools used in SESA are still relevant. This paper also investigates the importance of incorporating MHS in this approach and finally proposes some improvement opportunities for SESA including the tackling of the MHS fleet sizing problem. In fact, the wide literature review performed in this research indicates that SESA is still a pertinent approach but it must be improved. Therefore, it is expected that SESA improvement opportunities proposed in this work will greatly assist industrialists in enhancing the overall MS performance, providing a significant productivity increase and a minimization of the total production costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.