Tin oxide (SnO2) ultrathin films were deposited by pulsed laser deposition (PLD) onto SiO2/Si and quartz substrates, at various nominal thicknesses ranging from isolated nanoparticles (NPs) to ∼300 nm-thick films, under an oxygen background pressure of 10 mTorr. The microstructural and surface morphologies of the NP-based SnO2 films were characterized by x-ray diffraction and atomic force microscopy, as a function of their nominal film thickness. The PLD-SnO2 films were found to be composed of NPs (in the 1–6 nm range), whose size increases with the film thickness. The energy band gap, as determined from the absorption edge, was found to shift to higher values with decreasing the film thickness (i.e., decreasing the NPs size). It was found that an annealing at 700 °C under O2 ambient is a prerequisite to get a photoluminescence (PL) emission from the PLD-SnO2 films. The PL of the annealed SnO2 films was found to consist of two broad emission bands, regardless of the SnO2 film thickness. The first band is composed of 3 PL subbands peaking at 3.20, 3.01, and 2.90 eV, while the second one is centered on 2.48 eV. In spite of the observed band-gap widening (as confirmed by theoretical calculation), we show that surface state (e.g., oxygen vacancies) dominate completely the PL emission of SnO2 NPs, which becomes more luminescent as the NPs size decreases while the PL energy remains unchanged. The PL properties of the PLD-SnO2 NPs are discussed in terms of defects and/or oxygen vacancies related transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.