We have studied the band-gap reduction of GaAs1−xNx alloys with N contents between 0.1% and 1.5% using the absorption measurements in a series of samples grown by molecular-beam epitaxy. At room temperature, we observed a redshift of the band edge of about 205 meV for 1% of nitrogen. To interpret this effect, we assume that the incorporation of nitrogen in GaAs breaks the symmetry of the system and introduces localized N states that are weakly coupled to the extended states of the semiconductor. We have also studied the temperature dependence of the band gap of GaAsN alloys. The band-gap energy difference between 15 and 300 K decreases from 110 meV for GaAs, to 70 meV for GaAs0.985N0.015. All these experimental results can be explained by the band anticrossing model [W. Shan et al., Phys. Status Solidi B 223, 75 (2001)] with a coupling constant CNM of 2.7 eV, taking into account the contribution of tensile strain to the band-gap reduction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.