Abstract-This paper studies via simulation the stabilizing effect of all-optical gain-clamping (AOGC) in a chain of erbium-doped fiber amplifiers (EDFA) fed by wavelength-division multiplexing (WDM) burst-mode packet traffic. AOGC is necessary to suppress swings of output power and optical signal-to-noise ratio (OSNR). A case study is selected, in which only the first EDFA in a cascade of six amplifiers is clamped using a ring laser configuration. A numerical model which solves the transcendental equation for the average inversion at each EDFA is used for the analysis. The traffic is generated on the eight WDM channels by ON-OFF time-slotted sources, with statistically independent ON and OFF durations, randomly generated by a truncated Pareto distribution with infinite variance. The simulation model includes the generation of amplified spontaneous emission within each amplifier and the propagation of the lasing power generated in the AOGC EDFA through the cascade. It is shown that the sizable power and OSNR swings arising in an unclamped cascade of EDFA's can be effectively suppressed when a lasing signal a few decibels above the aggregate signal power develops in the AOGC EDFA and propagates along the cascade.Index Terms-Modeling, optical communication, optical fiber amplifiers, transient analysis, wavelength-division multiplexing (WDM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.