The hippocampus is critical to healthy cognition, yet results in the current study show that action video game players have reduced grey matter within the hippocampus. A subsequent randomised longitudinal training experiment demonstrated that first-person shooting games reduce grey matter within the hippocampus in participants using non-spatial memory strategies. Conversely, participants who use hippocampus-dependent spatial strategies showed increased grey matter in the hippocampus after training. A control group that trained on 3D-platform games displayed growth in either the hippocampus or the functionally connected entorhinal cortex. A third study replicated the effect of action video game training on grey matter in the hippocampus. These results show that video games can be beneficial or detrimental to the hippocampal system depending on the navigation strategy that a person employs and the genre of the game.
Visual spatial attention is important during navigation processes that rely on a cognitive map, because spatial relationships between environmental landmarks need to be selected, encoded, and learned. People who navigate using this strategy are spatial learners, and this process relies on the hippocampus. Conversely, response learners memorize a series of actions to navigate, which relies on the caudate nucleus. Response learning, which is more efficient, is thought to involve less demanding cognitive operations, and is related to reduced grey matter in the hippocampus. To test if navigational strategy can impact visual attention performance, we investigated if spatial and response learners showed differences in attentional engagement used during a visual spatial task. We tested 40 response learners and 39 spatial learners, as determined by the 4-on-8 Virtual Maze (4/8 VM), on a target detection task designed to elicit an N2pc component (an index visual spatial attention). Spatial learners produced a larger N2pc amplitude during target detection compared to response learners. This relationship might represent an increase in goal-directed attention towards target stimuli or a more global increase in cognitive function that has been previously observed in spatial learners.
Aviation remains one of the safest modes of transportation. However, an inappropriate response to an unexpected event can lead to flight incidents and accidents. Among several contributory factors, startle and surprise, which can lead to or exacerbate the pilot's state of stress, are often cited. Unlike stress, which has been the subject of much study in the context of driving and piloting, studies on startle and surprise are less numerous and these concepts are sometimes used interchangeably. Thus, the definitions of stress, startle, and surprise are reviewed, and related differences are put in evidence. Furthermore, it is proposed to distinguish these notions in the evaluation and to add physiological measures to subjective measures in their study. Indeed, Landman's theoretical model makes it possible to show the links between these concepts and studies using physiological parameters show that they would make it possible to disentangle the links between stress, startle and surprise in the context of aviation. Finally, we draw some perspectives to set up further studies focusing specifically on these concepts and their measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.