Toxicity of the typical antipsychotic haloperidol (HAL) comprises an apoptotic component that we link to pro-apoptotic Bcl-XS in PC12 preneuronal and N2a neuroblastoma cells. The mitochondrial translocation of Bcl-XS and its interaction with the pore-forming voltage-dependent anion channel (VDAC) correlates with the redistribution of cytochrome c and the cleavage of Poly(ADP-ribose) polymerase. Haloperidol-induced apoptosis is mediated by the sigma2 (s2) receptor system and does not involve the expected antagonism of the dopamine D 2 receptor, nor is it influenced by Vitamin E-or p53/Bax-mediated events. Pathological relevance is demonstrated by the cytotoxic synergism between HAL and the Alzheimer diseaserelated peptide b-amyloid(1-40), which correlates with Bcl-XS expression and its interaction with VDAC, and with cytosolic cytochrome c translocation. These data provide for a unique apoptotic mechanism that could underscore the clinical risks associated with HAL, particularly following chronic regimens or in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.