Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy metals that induce complex responses, which result in reduced growth as well as crop yield. Phytohormones are well known for their regulatory role in plant growth and development, and they serve as important chemical messengers, allowing plants to function during exposure to various stresses. Seed priming is a physiological technique involving seed hydration and drying to improve metabolic processes prior to germination, thereby increasing the percentage and rate of germination and improving seedling growth and crop yield under normal and various biotic and abiotic stresses. Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating different stresses. Thus, seed priming with phytohormones has emerged as an important tool for mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how mitigation is accomplished, and roles of priming on the enhancement of crop production.
To reach in good plant stand, the life cycle of plants is faced with different critical stages such as uneven seed germination, poor and early seedling growth which ultimately results in low crop yield. It is well known that seed priming enhances germination, reduces seedling emergence time, and improves yield and yield contributing characters of plants. Seed priming is a physiological technique of seed hydration and drying to improve the metabolic process prior to germination to fasten the germination, seedling growth, and crop yield under normal, as well as different biotic and abiotic stress conditions. Many researchers have done a lot of research on seed priming in field crops to enhance the final yield. However, different priming methods and their application in field crops are poorly described. Therefore, this review paper discusses seed priming and its different methods and their application in field crops as well as future perspectives of seed priming.
Selenium (Se) causes oxidative damage to plants. Proline is accumulated as a compatible solute in plants under stress conditions and mitigates stresses. Selenate at 250 µM increased cell death and inhibited the growth of tobacco BY-2 cells while exogenous proline at 10 mM did not mitigate the inhibition by selenate. Selenate increased accumulation of Se and ROS and activities of antioxidant enzymes but not lipid peroxidation in the BY-2 cells. Proline increased Se accumulation and antioxidant enzyme activities but not either ROS accumulation or lipid peroxidation in the selenate-stressed cells. Glutathione (GSH) rather than ascorbic acid (AsA) mitigated the growth inhibition although both reduced the accumulation of ROS induced by selenate. These results indicate that proline increases both antioxidant enzyme activities and Se accumulation, which overall fails to ameliorate the growth inhibition by selenate and that the growth inhibition is not accounted for only by ROS accumulation. Abbreviations: APX: ascorbate peroxidase; AsA: ascorbic acid; BY-2: Bright Yellow-2; CAT: catalase; DAI: days after inoculation; DW: dry weight; FW: fresh weight; GSH: glutathione; ROS: reactive oxygen species
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.