A quasi-discrete Hankel transform (QDHT) is presented as a new and efficient framework for numerical evaluation of the zero-order Hankel transform. A discrete form of Parseval's theorem is obtained for the first time to the authors' knowledge, and the transform matrix is discussed. It is shown that the S factor, defined as the products of a truncated radius, is critical to building the QDHT.
We derive the integral representation of a fractional Hankel transform (FRHT) from a fractional Fourier transform. Some basic properties of the FRHT such as Parseval's theorem and its optical implementation are discussed qualitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.