Post Kala-azar Dermal Leishmaniasis (PKDL) is a chronic but not life-threatening disease; patients generally do not demand treatment, deserve much more attention because PKDL is highly relevant in the context of Visceral Leishmaniasis (VL) elimination. There is no standard guideline for diagnosis and treatment for PKDL. A species-specific PCR on slit skin smear demonstrated a sensitivity of 93.8%, but it has not been applied for routine diagnostic purpose. The study was conducted to determine the actual disease burden in an endemic area of Malda district, West Bengal, comparison of the three diagnostic tools for PKDL case detection and pattern of lesion regression after treatment. The prevalence of PKDL was determined by active surveillance and confirmed by PCR based diagnosis. Patients were treated with either sodium stibogluconate (SSG) or oral miltefosine and followed up for two years to observe lesion regression period. Twenty six PKDL cases were detected with a prevalence rate of 27.5% among the antileishmanial antibody positive cases. Among three diagnostic methods used, PCR is highly sensitive (88.46%) for case confirmation. In majority of the cases skin lesions persisted after treatment completion which gradually disappeared during 6–12 months post treatment period. Reappearance of lesions noted in two cases after 1.5 years of miltefosine treatment. A significant number of PKDL patients would remain undiagnosed without active mass surveys. Such surveys are required in other endemic areas to attain the ultimate goal of eliminating Kala-azar. PCR-based method is helpful in confirming diagnosis of PKDL, referral laboratory at district or state level can achieve it. So a well-designed study with higher number of samples is essential to establish when/whether PKDL patients are free from parasite after treatment and to determine which PKDL patients need treatment for longer period.
Asymptomatic leishmaniasis may drive the epidemic and an important challenge to reach the goal of joint Visceral Leishmaniasis (VL) elimination initiative taken by three Asian countries. The role of these asymptomatic carriers in disease transmission, prognosis at individual level and rate of transformation to symptomatic VL/Post Kala-azar Dermal Leishmaniasis (PKDL) needs to be evaluated. Asymptomatic cases were diagnosed by active mass survey in eight tribal villages by detecting antileishmanial antibody using rK39 based rapid diagnostic kits and followed up for three years to observe the pattern of sero-conversion and disease transformation. Out of 2890 total population, 2603 were screened. Antileishmanial antibody was detected in 185 individuals of them 96 had a history of VL/PKDL and 89 without such history. Seventy nine such individuals were classified as asymptomatic leishmaniasis and ten as active VL with a ratio of 7.9:1. Out of 79 asymptomatic cases 2 were lost to follow up as they moved to other places. Amongst asymptomatically infected persons, disease transformation in 8/77 (10.39%) and sero-conversion in 62/77 (80.52%) cases were noted. Seven (9.09%) remained sero-positive even after three years. Progression to clinical disease among asymptomatic individuals was taking place at any time up to three years after the baseline survey. If there are no VL /PKDL cases for two or more years, it does not mean that the area is free from leishmaniasis as symptomatic VL or PKDL may appear even after three years, if there are such asymptomatic cases. So, asymptomatic infected individuals need much attention for VL elimination programme that has been initiated by three adjoining endemic countries.
Sulfadoxine-pyrimethamine has never been recommended for the treatment of Plasmodium vivax malaria as the parasite is intrinsically resistant to pyrimethamine. The combination was introduced as a promising agent to treat Plasmodium falciparum malaria in many countries but was withdrawn after a few years due to development and spread of resistant strains. Presently, sulfadoxine-pyrimethamine is used as a partner drug of artemisinin-based combination therapy to treat uncomplicated falciparum malaria, and a combination of artesunate-sulfadoxine-pyrimethamine is currently in use in India. In countries like India, where both P. vivax and P. falciparum are equally prevalent, some proportion of P. vivax bacteria is exposed to sulfadoxinepyrimethamine due to misdiagnosis and mixed infections. As reports on the in vivo therapeutic efficacy of sulfadoxine-pyrimethamine in P. vivax are rare, the study of mutations in the marker genes P. vivax dhfr (pvdhfr) and pvdhps is important for predicting drug selection pressure and sulfadoxine-pyrimethamine resistance monitoring. We studied the prevalence of point mutations and haplotypes of both the genes in 80 P. vivax isolates collected from urban Kolkata, India, by the DNA sequencing method. Point mutation rates in both the genes were low.
Background Aedes albopictus and Aedes aegypti are the major vectors of arboviral diseases. As effective vaccines are not available for most of the arboviral diseases, vector control by using insecticides play the key role to reduce the disease transmission. The emergence and spread of resistance to different classes of insecticides by the vectors is a major obstacle to control the disease transmission. Information about vector susceptibility to different insecticides and their mechanisms are very important for formulating proper vector control measures. The present study was designed to assess the susceptibility of Ae . aegypti against three different classes of adulticides, one larvicidal agent available and polymorphisms in the voltage-gated sodium channel ( VGSC ) gene related to insecticide resistance. Methods Immature stages of Ae . aegypti were collected from three dengue endemic municipal areas of West Bengal and reared in the laboratory. Larvae and adults (F1 progeny) were used for insecticide bioassay as per WHO protocols. Knock down resistance gene ( kdr ) mutations were assessed by direct sequencing of PCR products. Results The Ae . aegypti population was found to be susceptible to type II pyrethroids and malathion but highly resistant to DDT. A high rate of polymorphisms in the VGSC gene was observed among the collected mosquitoes. A double mutant V1016 G + F1534 C was found to be associated with DDT resistance but neither V1016 G nor F1534 C alone showed the same association. Association between the kdr mutations and the susceptibility status of pyrethroids could not be established due to very small sample size. A low to moderate level of resistance was noticed against temephos among the larval population based on WHO criteria. Conclusion The replacement of DDT by type II pyrethroids for the management of dengue vectors is an appropriate decision taken by the national program which is supported by the findings of a higher level of resistance to DDT. Persistence of polymorphisms in the VGSC gene might be an indication of emergence of resistance against pyrethroid insecticides that should be monitored at a regular interval. Attempts should be made to determine the effectiveness of other larvicides for replacement of temephos if needed in future. Along with the chemical insecticides different biological vector control methods as well as biopesticides should also be used in vector control programmes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.