This paper proposes an affinity fusion graph framework to effectively connect different graphs with highly discriminating power and nonlinearity for natural image segmentation. The proposed framework combines adjacency-graphs and kernel spectral clustering based graphs (KSC-graphs) according to a new definition named affinity nodes of multi-scale superpixels. These affinity nodes are selected based on a better affiliation of superpixels, namely subspace-preserving representation which is generated by sparse subspace clustering based on subspace pursuit. Then a KSC-graph is built via a novel kernel spectral clustering to explore the nonlinear relationships among these affinity nodes. Moreover, an adjacency-graph at each scale is constructed, which is further used to update the proposed KSCgraph at affinity nodes. The fusion graph is built across different scales, and it is partitioned to obtain final segmentation result. Experimental results on the Berkeley segmentation dataset and Microsoft Research Cambridge dataset show the superiority of our framework in comparison with the state-of-the-art methods. The code is available at https://github.com/Yangzhangcst/AF-graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.