The electrical performance of SiC-based microelectronic devices is strongly affected by the densities of interfacial traps introduced by the chemical and structural changes at the SiO2∕SiC interface during processing. We analyzed the structure and chemistry of this interface for the thermally grown SiO2∕4H-SiC heterostructure using high-resolution transmission electron microscopy (TEM), Z-contrast scanning TEM, and spatially resolved electron energy-loss spectroscopy. The analyses revealed the presence of distinct layers, several nanometers thick, on each side of the interface; additionally, partial amorphization of the top SiC surface was observed. These interfacial layers were attributed to the formation of a ternary Si–C–O phase during thermal oxidation.
A method to form SiO2/SiC metal–oxide–semiconductor structures by oxidation of a thin polycrystalline silicon (polysilicon) layer deposited on SiC is demonstrated. The oxidation time used is sufficient to oxidize all the polysilicon while short enough at 1050 °C to insure insignificant oxidation of the underlying SiC. Since the oxidation of SiC is highly anisotropic, this method allows uniform oxide formation on a nonplanar SiC surface. The SiO2/SiC interface quality is comparable to that obtained with thermal oxidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.