Segmentation of suspicious regions (SRs) of a thermal breast image (TBI) is a very significant and challenging problem for identification of breast cancer. Therefore, in this work, we have proposed an active contour model for the segmentation of the SRs in a TBI. The proposed segmentation method combines three significant steps. First, a novel method, called smaller-peaks corresponding to the high-intensity-pixels and the centroid-knowledge of SRs (SCH-CS), is proposed to approximately locate the SRs, whose contours are later used as the initial evolving curves of the level set method (LSM). Second, a new energy functional, called different local priorities embedded (DLPE), is proposed regarding the level set function. DLPE is then minimized using the interleaved level set evolution to segment the potential SRs in a TBI more accurately. Finally, a new stopping criterion is incorporated into the proposed LSM. The proposed LSM not only increases the segmentation speed but also ameliorates the segmentation accuracy. Performance of our SR segmentation method was evaluated on two TBI databases, namely, DMR-IR and DBT-TU-JU and the average segmentation accuracies obtained on these databases are 72.18% and 71.26% respectively, which are better than other state-of-the-art methods. Beside this, a novel framework to analyze TBIs is proposed for differentiating abnormal and normal breasts on the basis of the segmented SRs. We have also shown experimentally that investigating only the SRs instead of the whole breast is more effective in differentiating abnormal and normal breasts.
The purpose of this study is to develop a novel breast abnormality detection system by utilizing the potential of infrared breast thermography (IBT) in early breast abnormality detection. Since the temperature distributions are different in normal and abnormal thermograms and hot thermal patches are visible in abnormal thermograms, the abnormal thermograms possess more complex information than the normal thermograms. Here, the proposed method exploits the presence of hot thermal patches and vascular changes by using the power law transformation for pre-processing and singular value decomposition to characterize the thermal patches. The extracted singular values are found to be statistically significant (p < 0.001) in breast abnormality detection. The discriminability of the singular values is evaluated by using seven different classifiers incorporating tenfold cross-validations, where the thermograms of the Department of Biotechnology-Tripura University-Jadavpur University (DBT-TU-JU) and Database of Mastology Research (DMR) databases are used. In DMR database, the highest classification accuracy of 98.00% with the area under the ROC curve (AUC) of 0.9862 is achieved with the support vector machine using polynomial kernel. The same for the DBT-TU-JU database is 92.50% with AUC of 0.9680 using the same classifier. The comparison of the proposed method with the other reported methods concludes that the proposed method outperforms the other existing methods as well as other traditional feature sets used in IBT based breast abnormality detection. Moreover, by using Rank1 and Rank2 singular values, a breast abnormality grading (BAG) index has also been developed for grading the thermograms based on their degree of abnormality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.