5-hydroxymethylcytosine (5-hmC), a derivative of 5-methylcytosine (5-mC), is abundant in the brain for unknown reasons. Our goal was to characterize the genomic distribution of 5-hmC and 5-mC in human and mouse tissues. We assayed 5-hmC using glucosylation coupled with restriction enzyme digestion, and interrogation on microarrays. We detected 5-hmC enrichment in genes with synapse-related functions in both human and mouse brain. We also identified substantial tissue-specific differential distributions of these DNA modifications at the exon-intron boundary, in both human and mouse. This boundary change was mainly due to 5-hmC in the brain, but due to 5-mC in non-neural contexts. This pattern was replicated in multiple independent datasets and with single molecule sequencing. Moreover, in human frontal cortex, constitutive exons contained higher levels of 5-hmC, relative to alternatively-spliced exons. Our study suggests a novel role for 5-hmC in RNA splicing and synaptic function in the brain.
Epigenetic studies of DNA and histone modifications represent a new and important activity in molecular investigations of human disease. Our previous epigenome-wide scan identified numerous DNA methylation differences in post-mortem brain samples from individuals affected with major psychosis. In this article, we present the results of fine mapping DNA methylation differences at the human leukocyte antigen (HLA) complex group 9 gene (HCG9) in bipolar disorder (BPD). Sodium bisulfite conversion coupled with pyrosequencing was used to interrogate 28 CpGs spanning ∼700 bp region of HCG9 in 1402 DNA samples from post-mortem brains, peripheral blood cells and germline (sperm) of bipolar disease patients and controls. The analysis of nearly 40 000 CpGs revealed complex relationships between DNA methylation and age, medication as well as DNA sequence variation (rs1128306). Two brain tissue cohorts exhibited lower DNA methylation in bipolar disease patients compared with controls at an extended HCG9 region (P=0.026). Logistic regression modeling of BPD as a function of rs1128306 genotype, age and DNA methylation uncovered an independent effect of DNA methylation in white blood cells (odds ratio (OR)=1.08, P=0.0077) and the overall sample (OR=1.24, P=0.0011). Receiver operating characteristic curve A prime statistics estimated a 69-72% probability of correct BPD prediction from a case vs control pool. Finally, sperm DNA demonstrated a significant association (P=0.018) with BPD at one of the regions demonstrating epigenetic changes in the post-mortem brain and peripheral blood samples. The consistent multi-tissue epigenetic differences at HCG9 argue for a causal association with BPD.
Background Major depressive disorder (MDD) exhibits numerous clinical and molecular features that are consistent with putative epigenetic misregulation. Despite growing interest in epigenetic studies of psychiatric diseases, the methodologies guiding such studies have not been well defined. Methods We performed DNA modification analysis in white blood cells from monozygotic twins discordant for MDD, in brain prefrontal cortex, and germline (sperm) samples from affected individuals and control subjects (total N = 304) using 8.1K CpG island microarrays and fine mapping. In addition to the traditional locus-by-locus comparisons, we explored the potential of new analytical approaches in epigenomic studies. Results In the microarray experiment, we detected a number of nominally significant DNA modification differences in MDD and validated selected targets using bisulfite pyrosequencing. Some MDD epigenetic changes, however, overlapped across brain, blood, and sperm more often than expected by chance. We also demonstrated that stratification for disease severity and age may increase the statistical power of epimutation detection. Finally, a series of new analytical approaches, such as DNA modification networks and machine-learning algorithms using binary and quantitative depression phenotypes, provided additional insights on the epigenetic contributions to MDD. Conclusions Mapping epigenetic differences in MDD (and other psychiatric diseases) is a complex task. However, combining traditional and innovative analytical strategies may lead to identification of disease-specific etiopathogenic epimutations.
Background:Long-term therapy with metformin was shown to decrease the Vitamin B12 level and manifested as peripheral neuropathy.Aim:The aim of this study is to define the prevalence of Vitamin B12 deficiency in early Type 2 diabetic patients (duration ≤5 years or drug treatment ≤3 years) and the relationship among metformin exposure and levels of cobalamin (Cbl), folic acid, and homocysteine (Hcy) with severity of peripheral neuropathy.Methodology:This is a cross-sectional study involving randomly selected ninety patients (male 56, female 34) between age groups of 35 and 70 years, comparing those who had received >6 months of metformin (Group A) (n = 35) with those without metformin (Group B) (n = 35) and patients taking metformin with other oral hypoglycemic agent (Group C) (n = 20). Comparisons were made clinically, biochemically (serum Cbl, fasting Hcy, and folic acid), and with electrophysiological measures (nerve conduction studies of all four limbs). Comorbidities contributing to neuropathy were excluded from the study.Results:Group A patients (54.28%) were prone to develop peripheral neuropathy comparing Group B (28.57%) and Group C (35%). There was significantly low plasma level of Cbl in Group A (mean 306.314 pg/ml) than in Group B (mean 627.543 pg/ml) and Group C (mean 419.920 pg/ml). There was insignificant low-level plasma folic acid in Group A (16.47 ng/ml) than in Group B (16.81 ng/ml) and Group C (22.50 ng/ml). There was significantly high level of Hcy in Group A (mean 17.35 µmol/L) and Group C (mean 16.99 µmol/L) than in Group B (mean 13.22 µmol/L). Metformin users even for 2 years showed evidence of neuropathy on nerve conduction velocity though their body mass index and postprandial blood sugar were maintained. There was significant difference in between groups regarding plasma Cbl, folic acid, and Hcy level as significance level <0.05 in all three groups (F [2, 87] = 28.1, P = 0.000), (F [2, 87] = 7.43, P = 0.001), (F [2, 87] = 9.76, P = 0.000). Post hoc study shows significant (P < 0.05) lowering of Cbl and Hcy level in Group A (mean = 306.314, standard deviation [SD] = 176.7) than in Group C (mean = 419.92, SD = 208.23) and Group B (mean = 627.543, SD = 168.33).Discussion:Even short-term treatment with metformin causes a decrease in serum Cbl folic acid and increase in Hcy, which leads to peripheral neuropathy in Type 2 diabetes patients. A multicenter study with heterogeneous population would have increased the power of the study. We suggest prophylactic Vitamin B12 and folic acid supplementation or periodical assay in metformin user.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.