Post-harvest hydrothermal processing of grains are targeted at improving milling performances and nutritional properties. In this study, the effects of two hydrothermal processes, namely steam parboiling and soaking in boiling water for different durations on properties of buckwheat (Fagopyrum esculentum L.) grown in the Indian Himalayan regions were assessed. Both treatments significantly improved milling yield. Changes in grain section morphology were evidenced under scanning electron microscope. Milder processing for 5 and 10 min mostly exerted annealing effect, represented by increased intensities of X-ray diffraction peaks. Starch gelatinization occurred upon prolonged processing for 15 and 20 min. This resulted in decreased crystallinity, increased sedimentation volume, paste thinning during rapid viscosity analysis and lower thermal transition in differential scanning calorimetry. Marginal changes in oil uptake suggested limited protein denaturation. Natural antioxidant compounds were variably denatured. Maillard browning was indicated by CIE L* a* b* colour and antioxidant levels. The starchy flour samples showed partial resistance to enzymatic amylolysis post retrogradation. Soaking in boiling water can be considered as a feasible alternative to conventional steam parboiling for better milling yield of buckwheat. Altered physicochemical and nutritional properties of buckwheat suggested that the hydrothermally modified flours can be used in ready to eat therapeutic food products.
BACKGROUND: Cow ghee is one of the expensive edible fats in the dairy sector. Ghee is often adulterated with low-priced edible oils, like soybean oil, owing to its high market demand. The existing adulteration detection methods are time-consuming, requiring sample preparation and expertise in these fields. The possibility of detecting soybean oil adulteration (from 10% to 100%) in pure cow ghee was investigated in this study. The fingerprint information of volatile compounds was collected using a flash gas chromatography electronic nose (FGCEN) instrument. The classification results were studied using the pattern recognition chemometric models principal component analysis (PCA), soft independent modelling of class analogy (SIMCA), and discriminant function analysis (DFA).RESULTS: The most powerful fingerprint odor of all the samples identified from FGCEN analysis was acetaldehyde (Z)-4-heptenal, 2-propanol, ethyl propanoate, and pentan-2-one. The odor analysis investigation was accomplished with an average analysis time of 90 s. A clear differentiation of all the samples with an excellent classification accuracy of more than 99% was achieved with the PCA and DFA chemometric methods. However, the results of the SIMCA model showed that SIMCA could only be used to detect ghee adulteration at higher concentration levels (30% to 100%). The validation study shows good agreement between FGCEN and gas chromatography-mass spectrometry methods.CONCLUSION: The methodology demonstrated coupled with PCA and DFA methods for adulteration detection in ghee using FGCEN apparatus has been an efficient and convenient technique. This study explored the capability of the FGCEN instrument to tackle the adulteration problems in ghee.
This study aimed to detect various proportions of vanaspati mixed with cow ghee using an electronic nose (e‐nose) based on fast gas chromatography. The e‐nose apparatus was equipped with a non‐polar and medium polar column used to generate two chromatograms simultaneously along with the volatile compound information. Further investigation on the adulteration detection in ghee was carried out using chemometric analysis such as principal component analysis (PCA), discriminant function analysis (DFA), and soft‐independent modeling of class analogy (SIMCA). An outstanding differentiation among all the samples was obtained using PCA and DFA with 99.85% and 99.83% classification accuracy in the e‐nose dataset. SIMCA presented a validation score of 76, indicating SIMCA could also be a potential method to detect higher levels of adulteration in ghee. The validation study shows good agreement between FGCEN and GC–MS methods.
Practical applications
Cow ghee is frequently adulterated with vanaspati, due to its high market demand. The existing methods for adulteration detection are time‐consuming, and require tedious sample preparation and expertise in these fields. The e‐nose based on fast GC combined with chemometric analysis turned out to be a reliable and promising technique for various proportions of adulteration detection in pure cow ghee. The technique was efficient enough to get the volatile compound information from the samples in a fast‐performing way. The chemometrics used has shown to be effective to confirm adulterations in ghee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.