This study investigates the efficacy of chemically modified bone adhesive as a formaldehyde‐free binder for wood‐based industries. Two different types of adhesive are formulated after chemical modification of bone powder using sulfuric acid (0.5 m) and polyvinyl acetate (PVA). Gel time, solid content, Fourier‐transform infrared spectroscopy (FT‐IR), thermogravimetric analysis (TGA), viscosity, and single lap joint test for shear strength are analyzed in order to assess the adhesive properties. To analyze the efficacy of the formulated adhesive, particleboards are fabricated using boiled and unboiled sugarcane bagasse. The physical and mechanical properties of the fabricated panels are measured following ASTM standards. It is found that adhesive Type C (T‐C) has the shortest gel time of 4.2 min for the highest shear strength, i.e., 5.31 MPa. The particleboard (BTC‐2) fabricated using T‐C adhesive shows a highest density of 0.73 g cm−3, a modulus of elasticity (MOE) of 1975 N mm−2, and a modulus of rupture (MOR) of 11.80 N mm−2. The dimensional stability of the fabricated particleboards does not follow the standard requirements; however, further study might be helpful for using the chemically modified bone adhesive as a biobased adhesive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.