Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
Soil life supports the functioning and biodiversity of terrestrial ecosystems1,2. Springtails (Collembola) are among the most abundant soil animals regulating soil fertility and flow of energy through above- and belowground food webs3-5. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset collected from 2,470 sites, we estimate total soil springtail biomass at 29 Mt carbon (threefold higher than wild terrestrial vertebrates6) and record peak densities up to 2 million individuals per m2 in the Arctic. Despite a 20-fold biomass difference between tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the increase in temperature. Neither springtail density nor community metabolism were predicted by local species richness, which was highest in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation7,8, and resource limitation7,9,10 in soil communities. Contrasting temperature responses of biomass, diversity and activity of springtail communities suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting major soil functions.
South Africa is the largest CO2 emitter on the African continent. These emissions stem from a heavy reliance on coal as the primary energy fuel and contributor toward socio-economic development. The South African government has targeted reducing CO2 emissions by more than half in the next 10 years. To meet climate change mitigation scenarios, while alleviating continued emissions, South Africa will look to technologies such as carbon capture, utilisation and storage. Initial assessments of South Africa’s potential for CO2 storage have focused on deep saline aquifers within volcano-sedimentary sequences along the near and offshore regions. Sustaining the Just Transition will, however, require additional storage capacity. In this study, we make an initial assessment of possible CO2 storage in basaltic sequences of the Ventersdorp Supergroup. Geological and mineralogical information was ascertained from borehole data. The geological information suggests that the subsurface extent of the Ventersdorp Supergroup is at least 80 000 km2 larger than previously mapped, extending beneath major point-source CO2 emitters and active coalfields. Furthermore, petrographic analyses suggest pore space of up to ca 15% with minimal alteration, and preservation of mafic silicate minerals that would enable reactive carbonation of injected CO2. Notable metasomatic and hydrothermal alteration is confined to significant contact horizons, such as the lowermost Ventersdorp Contact Reef. These results suggest that basaltic sequences may exponentially increase South Africa’s CO2 sequestration storage capacity and may have a significant impact on the country’s Just Transition.
Multispectral sensors, along with common and advanced algorithms, have become efficient tools for routine lithological discrimination and mineral potential mapping. It is with this paradigm in mind that this paper sought to evaluate and discuss the detection and mapping of magnetite on the Eastern Limb of the Bushveld Complex, using high spectral resolution multispectral remote sensing imagery and GIS techniques. Despite the wide distribution of magnetite, its economic importance, and its potential as an indicator of many important geological processes, not many studies had looked at the detection and exploration of magnetite using remote sensing in this region. The Maximum Likelihood and Support Vector Machine classification algorithms were assessed for their respective ability to detect and map magnetite using the PlanetScope Analytic data. A K-fold cross-validation analysis was used to measure the performance of the training as well as the test data. For each classification algorithm, a thematic landcover map was created and an error matrix, depicting the user’s and producer’s accuracies as well as kappa statistics, was derived. A pairwise comparison test of the image classification algorithms was conducted to determine whether the two classification algorithms were significantly different from each other. The Maximum Likelihood Classifier significantly outperformed the Support Vector Machine algorithm, achieving an overall classification accuracy of 84.58% and an overall kappa value of 0.79. Magnetite was accurately discriminated from the other thematic landcover classes with a user’s accuracy of 76.41% and a producer’s accuracy of 88.66%. The overall results of this study illustrated that remote sensing techniques are effective instruments for geological mapping and mineral investigation, especially iron oxide mineralization in the Eastern Limb of the Bushveld Complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.