It is unclear whether cardiac hypertrophy and hypertrophy-related pathways will be induced by long-term intermittent hypoxia. Thirty-six Sprague-Dawley rats were randomly assigned into three groups: normoxia, and long-term intermittent hypoxia (12% O 2 , 8 h per day) for 4 weeks (4WLTIH) or for 8 weeks (8WLTIH). Myocardial morphology, trophic factors and signalling pathways in the three groups were determined by heart weight index, histological analysis, Western blotting and reverse transcriptase-polymerase chain reaction from the excised left ventricle. The ratio of whole heart weight to body weight, the ratio of left ventricular weight to body weight, the gross vertical cross-section of the heart and myocardial morphological changes were increased in the 4WLTIH group and were further augmented in the 8WLTIH group. In the 4WLTIH group, tumour necrosis factor-α(TNFα), insulin-like growth factor (IGF)-II, phosphorylated p38 mitogen-activated protein kinase (P38), signal transducers and activators of transcription (STAT)-1 and STAT-3 were significantly increased in the cardiac tissues. However, in the 8WLTIH group, in addition to the above factors, interleukin-6, mitogen-activated protein kinase (MEK)5 and extracellular signal-regulated kinase (ERK)5 were significantly increased compared with the normoxia group. We conclude that cardiac hypertrophy associated with TNFα and IGF-II was induced by intermittent hypoxia. The longer duration of intermittent hypoxia further activated the eccentric hypertrophy-related pathway, as well as the interleukin 6-related MEK5-ERK5 and STAT-3 pathways, which could result in the development of cardiac dilatation and pathology.
Previous studies have suggested that garlic oil could protect the cardiovascular system. However, the mechanism by which garlic oil protects diabetes-induced cardiomyopathy is unclear. In this study, streptozotocin (STZ)-induced diabetic rats received garlic oil (0, 10, 50, or 100 mg/kg of body weight) by gastric gavage every 2 days for 16 days. Normal rats without diabetes were used as control. Cardiac contractile dysfunction examined by echocardiography and apoptosis evaluated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay were observed in diabetic rat hearts. Additionally, a shift in cardiac myosin heavy chain (MHC) gene expression from α- to β-MHC isoform, decreased levels of superoxide dismutase-1 (SOD-1) and cardiac α-actin, and elevated cardiac thiobarbituric acid reactive substances (TBARS) and caspase- and p38-NFκB-leading apoptosis signaling activities were demonstrated in diabetic hearts. However, these diabetes-related cardiac dysfunctions were almost dose-dependently ameliorated by garlic oil administration. In conclusion, garlic oil possesses significant potential for protecting hearts from diabetes-induced cardiomyopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.