The oldest remedies identified to mankind are herbal medicines. India is recognized worldwide for its Ayurvedic treatment. India has rich history of using many plants for medicinal purposes. Remedial plants are cooperating extremely dynamic position in customary drugs for the action of a variety of illness. However a key obstacle, which has hindered the promotion in use of alternative medicines in the developed countries, is no evidence of documentation and absence of stringent quality control measures. There is a demand for the evidence of every investigate effort execute on conventional remedies in the appearance of certification. The purpose of current review is to make accessible up-to-date information on, botany, morphology, ecological biodiversity, therapeutic uses, phytochemistry and pharmacological activities on diverse parts of Silybum marianum (L.) Gaertn (S. marianum). This review was assembled using technical literature from electronic search engine such as Springer link, Bio Med Central, Pub Med, Scopus, Science Direct, Scielo, Medline and Science domain. Supplementary texts were obtained from books, book chapters, dissertations, websites and other scientific publications. S. marianum a member of the Asteraceae family, is a tall herb with large prickly white veined green leaves and a reddish-purple flower that ends in sharp spines. It is native of the Mediterranean region and which has also spread in East Asia, Europe, Australia and America. Confident chemical constituents were exposed cognate as silybin A, silybin B, isosilybin A, isosilybin B, silychristin, silydianin, apigenin 7-O-β-(2″- O-α-rhamnosyl)galacturonide, kaempferol 3-O-α-rhamnoside-7-O-β-galacturonide, apigenin 7-O-β-glucuronide, apigenin 7-O-β-glucoside, apigenin 7-O-β-galactoside, kaempferol-3-O-α-rhamnoside, kaempferol, taxifolin and quercetin. The plant is exclusively used as anti-diabetic, hepatoprotective, hypocholesterolaemic, anti-hypertensive, anti-inflammatory, anti-cancer, and as an anti-oxidant. Seeds of the plant are also used as an anti-spasmodic, neuroprotective, anti-viral, immunomodulant, cardioprotective, demulcent and anti-haemorrhagic. The plant is also serves as a galactagogue, agent that induces milk secretion and used in the treatment of uterine disorders. The plant is employed in dissimilar conventional schemes of remedy in the cure of different illness.
: Flavonoids are secondary metabolites that are widely distributed in plants. These phenolic compounds are classified into various subgroups based on their structures: flavones, flavonols, isoflavones, flavanones and anthocyanins. They are known to perform various pharmacological actions like antioxidant, anti-inflammatory, anticancer, antimicrobial, antidiabetic and antiallergic, etc. Diabetes is a chronic progressive metabolic disorder that affects several biochemical pathway and leads to secondary complications such as neuropathy, retinopathy, nephropathy and cardiomyopathy. Among them, management of diabetic neuropathy is one of the major challenges for physicians as the well pharmaceutical industries. Naturally occurring flavonoids are extensively used for the treatment of diabetes and its complications due to their antioxidant properties. Moreover, flavonoids inhibit various pathways that are involved in the progression of diabetic neuropathy like reduction of oxidative stress, decrease in glycogenolysis, increase glucose utilization, decrease in the formation of advanced glycation end products and inhibition of the the α-glucosidase enzyme. This review entails current updates on therapeutic perspectives of flavonoids in the treatment of neuropathic pain. This manuscript explains pathological aspects of neuropathic pain, the chemistry of flavonoids, and their application in amelioration of neuropathic pain through preclinical studies either alone or in combination with other therapeutic agents. Keywords: Flavonoids, diabetic neuropathy, oxidative stress, glycogenolysis, α-glucosidase
Aim: The manuscript aims to describe the rheological behavior of potato starch in reference to different parameters. Methods: Various search engines such as Science Direct, Google Scholar, Scopus, Google Patents, etc. were used for the literature survey. Discussion: The manuscript describes the rheology and its classification. It describes the importance of rheology and factor affecting viscosity. The manuscript focuses on the physicochemical properties of potato starch, rheological properties of potato starch and pharmaceutical uses of potato starch. The rheological property of potato starch depends on the shear rate and viscosity. Conclusion: Rheological behavior of potato starch plays a significant role in food processing. In the future, potato starch will be used in various pharmaceutical companies, manufacturing, daily life and food products.
The pervasiveness of fungal infections is an issue for skin health globally, and there are a reported 40 million cases in developed and developing countries. Novel drug delivery systems provide better therapeutic efficacy over conventional drug therapy due to their lower side effects and toxicity. Furthermore, combinations of essential oils can represent alternative therapies for fungal infections that are resistant to synthetic drugs. This study is aimed at developing Timur oil into a nanoemulgel and evaluating its antifungal effects. The development of the formulation involved the preparation of a nanoemulsion by the titration method, followed by its evaluation for various physicochemical properties. The antifungal activity of the nanoemulgel against Candida albicans was evaluated. The zone of inhibition was determined using the disk diffusion method. The results show that the developed nanoemulgel has a particle size of 139 ± 6.11 nm, a PDI of 0.309, and a zeta potential of −19.12 ± 2.73 mV. An in vitro drug release study showed a sustained release of 70 ± 0.289% of the drug over a period of 24 h. The % drug permeation across the skin was found to be 79.11 ± 0.319% over 24 h. However, the amount of drug retained in the skin was 56.45 µg/g. The flux for the nanoemulgel was found to be 94.947 µg/cm2/h, indicating a better permeability profile. The nanoemulgel formulation showed a zone of inhibition of 15 ± 2.45 mm, whereas the 1% ketoconazole cream (marketed preparation) exhibited a zone of inhibition of 13 ± 2.13 mm. The results of this study suggest that developed nanoemulgel containing Timur oil and rosemary oil has the potential to be used for treating topical fungal infections caused by Candida albicans.
The aim of the work is to consolidate azilsartan-kamedoxomil (AZM) into lipid matrix controlled-release microparticles to enhance its permeability because AZM belongs to Biopharmaceutical classification (BCS) IV which characterized by poor permeability and to protect AZM from light and humidity and execute a prolonged release profile. Materials and methods. A reversed-phase HPLC method was created and validated to estimate the drug. AZM microparticles formulations were invented using melt dispersion technique and waxy materials such as carnuba wax, beeswax, stearic acid in the ratio of waxy-substance: drug ranging from 0.25: 1 to 1:1 and stabilizer namely; tween 80 and Poloxamer 407 in ratio of stabilizer: drug ranging from 0.5:1 to 1:1. Azilsartan formulations were assessed for azilsartan-medoxomil content, loading, entrapment efficiency, the zeta potential,the particle size, the morphology by scanning electronic microscopy (SEM), and in-vitro release profile. Results. Zeta potential results for microparticle formulations using beeswax and carnuba range from -21.1 mV to -26.6 mV and -20.6 mV to -26.7 mV, respectively. This difference indicates that the azilsartan microparticles containing stearic acid are better stabilized with zeta potential of 25.3 - 29.7 mV. Furthermore, the release from azilsartan microparticle formulations containing stearic acid exceeded 80 % after 8 h and remained for 24 h while release from beeswax did not exceed 65 % after the same period and less than 60 % in case of carnuba formulations Conclusions. The formulation (AZSP4) exhibited the highest zeta potential and released exceeding 80 % of AZM over the course of 8 hours and remained over a day. AZSP4 microparticles formulation containing, poloxamer 407, in a 0.8:0.8:1 drug: stearic acid: poloxamer ratio proved the ability of stearic acid microencapsulation employing poloxamer as stabilizer in a certain ratio can prolong the release of AZM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.