1Agent-Based Computing is a diverse research domain concerned with the building of intelligent software based on the concept of "agents". In this paper, we use Scientometric analysis to analyze all sub-domains of agent-based computing. Our data consists of 1,064 journal articles indexed in the ISI web of knowledge published during a twenty year period: 1990-2010. These were retrieved using a topic search with various keywords commonly used in sub-domains of agent-based computing. In our proposed approach, we have employed a combination of two applications for analysis, namely Network Workbench and CiteSpace -wherein Network Workbench allowed for the analysis of complex network aspects of the domain, detailed visualization-based analysis of the bibliographic data was performed using CiteSpace. Our results include the identification of the largest cluster based on keywords, the timeline of publication of index terms, the core journals and key subject categories. We also identify the core authors, top countries of origin of the manuscripts along with core research institutes. Finally, our results have interestingly revealed the strong presence of agentbased computing in a number of non-computing related scientific domains including Life Sciences, Ecological Sciences and Social Sciences.
BackgroundLiving systems are associated with Social networks — networks made up of nodes, some of which may be more important in various aspects as compared to others. While different quantitative measures labeled as “centralities” have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important, is the node actually important?PurposeThe goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data from published multidisciplinary network data sets.MethodWe take standard published network data sets while using a random network to establish a baseline. These data sets included the Zachary's Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge from associated published articles to review the role of each centrality measure in the determination of influential nodes.ResultsOur empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes.
Agent-based modeling and simulation tools provide a mature platform for development of complex simulations. They however, have not been applied much in the domain of mainstream modeling and simulation of computer networks. In this article, we evaluate how and if these tools can offer any value-addition in the modeling & simulation of complex networks such as pervasive computing, large-scale peer-to-peer systems, and networks involving considerable environment and human/animal/habitat interaction. Specifically, we demonstrate the effectiveness of NetLogo — a tool that has been widely used in the area of agent-based social simulation
Local damage models are known to produce pathological mesh dependent results. Regularization techniques are therefore mandatory if local damage models are used for academic research or industrial applications. The viscoplastic framework can be used for regularization of local damage models. Despite of the easy implementation of viscoplasticity, this method of regularization did not gain much popularity in comparison to the non-local or gradient damage models. This work is an effort to further explore viscoplastic regularization for quasi-static problems. The focus of this work is on ductile materials. Two different types of strain rate hardening models i.e. the Power law (with a multiplicative strain rate part) and the simplified Bergström van Liempt (with an additive strain rate part) models are used in this study. The modified Lemaitre's anisotropic damage model with a strain rate dependency was used in this study. It was found that the primary viscoplastic length scale is a function of the hardening and softening (damage) parameters and does not depend upon the prescribed strain rate whereas the secondary length scale is a function of the strain rate. As damage grows, the effective regularization length gradually decreases. When the effective regularization length gets shorter than the element length numerical results become mesh dependent again. This loss of objectivity can not be solved but the effect can be minimized by selecting a very fine mesh or by prescribing high deformation velocities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.